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Abstract. We show that for k = 2, 3, . . . , 6, iterations of the sum of k-th
powers of digits of natural numbers result in a small number of fixed points and
limit cycles.
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1. Iteration of sum of powers of digits

A natural number is congruent modulo 9 to the sum of its decimal digits. This
simple observation leads to the famous method of “casting out of nines” for the
test of divisibility by 9. It also follows that the digit sum operation, repeated
indefinitely, will eventually lead to a single digit number, its remainder when
divided by 9. This is called the digital root of the number. See, for example, [1].
Let k be a fixed positive integer. Consider the “sum of k-th powers of digits”
function

sk(n) :=
∑̀
j=0

akj for n =
∑̀
j=0

aj · 10`−j, 0 ≤ aj ≤ 9.

Clearly, s1(n) is the sum of the digits of n. Here are some simple examples:
s2(16) = 37, s3(153) = 153, s4(2178) = 6514, s4(6514) = 2178.

Iterations of s1 beginning with an integer will result in its digital root. In this
note we consider iterations of sk, k ≥ 2, from the various positive integers. For a
positive integer N , consider the sequence
Sk(N) : N, sk(N), s2k(N), . . . , smn (N), . . . ,

where smk (N) is obtained from N by m applications of sk. For example, the
sequence
S2(4) : 4, 16, 37, 58, 89, 145, 42, 20, 4, . . .

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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is periodic with period 8. The main result of this note is that every such Sk(N)
is eventually periodic (Theorem 2), and we determine the fixed points and limit
cycles for k = 2, 3, . . . , 6.

Lemma 1. If n has k + 2 or more digits, then n > sk(n).

Proof. It is easy to establish by mathematical induction that (k+2) · 9k < 10k+1

for k ≥ 1. This is clearly true for k = 1. Assuming (k + 2) · 9k < 10k+1, we have

(k+3) · 9k+1 = (k+2) · 9k+1 +9k+1 < 9 · 10k+1 +9k+1 < 9 · 10k+1 +10k+1 = 10k+2.

Now, if n has k + 2 + ` digits for ` ≥ 0, then

n ≥ 10k+1+` = 10`(10k+1) > 10` · (k + 2) · 9k > (k + 2 + `) · 9k ≥ sk(n).

Theorem 2. For every positive integer N , the sequence Sk(N) is eventually
periodic.

Proof. By Lemma 1, the sequence Sk(N) is strictly decreasing as long as the
terms have k + 2 or more digits. If n has k + 1 or fewer digits, then sk(n) ≤
(k+1)·9k < 10k+1. This means the terms of the sequence Sk(N) are eventually less
than 10k+1. Therefore, there is a sufficiently large integer m such that smk (N) =
sm+`
k (N) for some ` > 0. It follows that sm+h`

k (N) = smk (N) for every h ≥ 0. The
sequence is eventually periodic.

Corollary 3. For a fixed positive integer k, iterations of sk results in a fixed
point or a limit cycle.

For k = 2, 3, . . . , 6, the number of fixed points and limit cycles is relatively small.
Here are the fixed points of sk, integers n satisfying sk(n) = n:

k fixed points of sk
2 1
3 1, 153, 370, 371, 407.
4 1, 1634, 8208, 9474
5 1, 4150, 4151, 54748, 92727, 93084, 194979.
6 1, 548834.

Table 1. Fixed points of sk

2. Iterations of sum of squares of digits

For k = 2, if a sequence S2(N) does not terminate in the fixed point 1, it will
eventually enter the cycle (4, 16, 37, 58, 89, 145, 42, 20). This was established
by A. Porges in [2]. We outline a proof here by determining the limit cycles in
the iterations of the sum of squares of digits. By Lemma 1, we need only examine
those sequences beginning with 3-digit numbers. We show that we may simply
begin with 2-digit numbers.
First of all, if n is a 3-digit number, s2(n) ≤ 3 · 92 = 243. For 200 ≤ n ≤ 243,
s2(n) ≤ 22 + 42 + 92 = 101 < n. Therefore we may restrict to 3-digit numbers
“beginning with 1”. Table 2 shows all such numbers n with s2(n) ≥ 100. In each
case, s(n) < n.
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n 159 168 169 178 179 188 189 199
195 186 196 187 197 198

s2(n) 107 101 118 114 131 129 146 163

Table 2. 3-digit numbers n with s2(n) ≥ 100

Therefore it is enough to consider S2(N) for N ≤ 99. Figures 1 and 2 to-
gether show that beginning with a number with at most 2 digits, iterations of
the sum of squares of digits either converge to 1 or eventually enter the cycle
(4, 16, 37, 58, 89, 145, 42, 20).
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Figure 1. Iterations of sum of squares of digits converging to 1
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Figure 2. Iterations of sum of squares of digits to limit cycle
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3. Iterations of sum of cubes of digits

The function s3 has a number of fixed points other than 1. These are 153, 370,
371, and 407 (see Table 1). Sequences S3(N) not converging to one of these fixed
points will eventually enter a limit cycle. To enumerate these limit cycles, by
Lemma 1, we need only consider N with no more than 4 digits. One can further
show that n > s3(n) for 4-digit numbers N ≥ 2000. Therefore, we need only
consider S3(N) for N ≤ 1999. Note that s3(1999) = 2188 > 1999. The number
of sequences converging to the various fixed points are given in Table 3 below.

Fixed points 1 153 370 371 407 Total
sequences 34 666 343 588 78 1709

Table 3. Number of sequences S3(N) with fixed points for N ≤ 1999

Each of the remaining 1999− 1709 = 290 sequences enters one of the limit cycles
below. Table 4 gives the number of sequences entering the cycles at various points.
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Figure 3. Limit cycles of iterations of sum of cubes of digits

Cycle 136 244 919 1459 55 250 133 160 217 353 Total
sequences 3 18 15 54 16 3 91 24 18 48 290

Table 4. Number of sequences S3(N) entering limit cycles

4. Iterations of sum of 4-th powers of digits

To enumerate the limit cycles, we need only check S4(N) for N ≤ 19999. Table
5 shows the numbers of sequences converging to the four fixed points. Table 6
shows that the remaining sequences eventually enter one of two limit cycles, one
of length 2 and another of length 7.

Fixed point 1 1634 8208 9474 Total
sequences 17 60 1246 60 1383

Table 5. Number of sequences S4(N) with fixed points for N ≤ 19999

Cycle 2178 6514 1138 4179 9219 13139 6725 4338 4514 Total
sequences 744 150 44 1775 48 15749 12 72 22 18616

Table 6. Number of sequences S4(N) entering limit cycles
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5. Iterations of s5 and s6

We record the fixed points and limit cycles for iterations of s5 and s6 in Figures
4 and 5 respectively. For s5, it is enough to restrict to S5(N) for N < 2 · 105.

Cycle length 1 2 4 6 10 12 22 28
cycles 7 2 1 1 2 1 1 1

Table 7. Numbers of fixed points and limit cycles for s5.
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Figure 4. Fixed points and limit cycles for iterations of s5
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The result for s6 is simpler. For N < 2130000, there are two fixed points, and one
limit cycle each of length 2, 3, 4, 10, 30.
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Figure 5. Fixed points and limit cycles for iterations of s6

References

[1] H. E. Dudeney, Amusements in Mathematics, 1917; Dover reprint, 1970.
[2] A. Porges, A set of eight numbers, American Mathematical Monthly, 52 (1945) 379–382.


	1. Iteration of sum of powers of digits
	2. Iterations of sum of squares of digits
	3. Iterations of sum of cubes of digits
	4. Iterations of sum of 4-th powers of digits
	5. Iterations of s5 and s6
	References

