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1. Introduction

The Gauss-Newton’s theorem is a nice and famous theorem of Euclidean geometry.
This theorem is stated as follows :

Theorem 1.1. (Gauss-Newton [1]). Given a triangle ABC. Line d meets three
sidelines BC,CA,AB of triangle ABC at A1, B1, C1, respectively. Let A2, B2, C2

be midpoints of AA1, BB1, CC1 then A2, B2, C2 are collinear.

Some proofs of the Gauss-Newton theorem are in [1]
O. T. Dao expanded the Gauss-Newton theorem as follows:

Theorem 1.2. (O. T. Dao). Given a triangle ABC. Line d meets three sidelines
BC,CA,AB of the triangle ABC at A1, B1, C1, respectively. Let P be a point on
the plane, EFG be a cevian triangle of the point P . Lines AA1, BB1, CC1 meet
three sidelines of triangle EFG at A2, B2, C2 then A2, B2, C2 are collinear.

When P is the centroid of ABC, this theorem is the Gauss-Newton theorem.
A synthetic proof is given by Tel Cohv. See [2].

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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2. Using the affine and projective methods to prove Theorem 2

Solution 1 (The projective method)

Figure 1. The projective method

Consider the projective target {A, B, C ; P}. We have

A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1); P = (1, 1, 1).

The coordinates of the equation of the line AB are of the form[ ∣∣∣∣ 0 0
1 0

∣∣∣∣ , ∣∣∣∣ 0 1
0 0

∣∣∣∣ , ∣∣∣∣ 1 0
0 1

∣∣∣∣ ]
= [0, 0, 1]

Thus, the equation of the line AB is of the form : x3 = 0.
Similarly, the equation of the line BC is of the form x1 = 0.
The equation of the line CA is of the form x2 = 0.
Since A1 is on the line BC, the coordinates of the point A1 are of the form
A1 = (0, a, 1).
Since B1 is on the line CA, the coordinates of the point B1 are of the form
B1 = (1, 0, b).
The coordinates of the equation of the line A1B1 are of the form[ ∣∣∣∣ a 1

0 b

∣∣∣∣ , ∣∣∣∣ 1 0
b 1

∣∣∣∣ , ∣∣∣∣ 0 a
1 0

∣∣∣∣ ]
= [ab, 1, −a]

Since C1 = A1B1 ∩ AB, the coordinates of the point C1 satisfy the system of
equations {

abx1 + x2 − ax3 = 0
x3 = 0

Thus, C1 = (1, −ab, 0).
The coordinates of the equation of the line CC1 are of the form[ ∣∣∣∣ 0 1

−ab 0

∣∣∣∣ , ∣∣∣∣ 1 0
0 1

∣∣∣∣ , ∣∣∣∣ 0 0
1 −ab

∣∣∣∣ ]
= [ab, 1, 0]

Thus, the equation of the line CC1 is of the form : abx1 + x2 = 0.
The coordinates of the equation of the line GE are of the form[ ∣∣∣∣ 1 1

0 1

∣∣∣∣ , ∣∣∣∣ 1 0
1 1

∣∣∣∣ , ∣∣∣∣ 0 1
1 0

∣∣∣∣ ]
= [1, 1, −1]
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Thus, the equation of the line GE is of the form x1 + x2 − x3 = 0.
Since C2 = GE ∩ CC1, the coordinates of the point C2 satisfy the system of
equations : {

abx1 + x2 = 0
x1 + x2 − x3 = 0

Thus, C2 = (1, −ab, 1 − ab).
Similarly, the equation of the line GF is of the form : x1 − x2 + x3 = 0.
The coordinates of the line BB1 are of the form[ ∣∣∣∣ 1 0

0 b

∣∣∣∣ , ∣∣∣∣ 0 0
b 1

∣∣∣∣ , ∣∣∣∣ 0 1
1 0

∣∣∣∣ ] = [b, 0, −1]

Thus, the equation of the line BB1 is of the form : bx1 − x3 = 0.
Since B2 = GF ∩ BB1, the coordinates of the point B2 satisfy the system of
equations : {

bx1 − x3 = 0
x1 − x2 + x3 = 0

Thus, B2 = (1, 1 + b, b).
Similarly, the equation of the line EF is of the form :

−x1 + x2 + x3 = 0.

The coordinates of the equation of the line AA1 are of the form[ ∣∣∣∣ 0 0
a 1

∣∣∣∣ , ∣∣∣∣ 0 1
1 0

∣∣∣∣ , ∣∣∣∣ 1 0
0 a

∣∣∣∣ ] = [0, −1, a]

Thus, the equation of the line AA1 is of the form :

−x2 + ax3 = 0.

Since A2 = EF ∩ AA1, the coordinates of the point A2 satisfy the system of
equations : {

−x2 + ax3 = 0
−x1 + x2 + x3 = 0

Thus, A2 = (a + 1, a, 1).

Consider the determinant ∆ =

∣∣∣∣∣∣
1 1 + b b
1 −ab 1− ab

a + 1 a 1

∣∣∣∣∣∣ , we have:

∆ = −ab.1 − a(1− ab) − 1.((1 + b).1− ab) + (a + 1) ((1 + b) − ab)
= −ab − a + a2b − 1 − b + ab + (a + ab − a2b + 1 + b − ab)
= 0.

Thus, A2, B2, C2 are collinear.
Solution 2 (the affine method)

Considering the affine coordinate system {B ; BC, BA}, we have :

B = (0, 0), C = (1, 0), A = (0, 1).

The equation of the line AC is of the form :
x − 1
1 − 0

= y − 0
0 − 1

⇔ −1(x − 1) = y ⇔ x + y − 1 = 0.
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Figure 2. The affine method

The equation of the line B1C1 is of the form
x − 0
0 − m

= y − n
n + m − 1

⇔ (m + n − 1)x + my − mn = 0.

Since A1 = B1C1 ∩ BC, the coordinates of the point A1 satisfy the system of
equations {

(m + n − 1)x + my − mn = 0
y = 0

Thus, A1

(
mn

m + n − 1
, 0

)
.

The equation of the line AA1 is of the form
x − mn

m + n − 1
mn

m + n − 1
− 0

= y − 0
0 − 1

⇔ −1
(
x − mn

m + n − 1

)
= mn

m + n − 1
y

⇔ (m + n − 1)x + mny − mn = 0.

The equation of the line BB1 is of the form

(1 − m)x − my = 0.

The equation of the line BE is of the form

(1 − p)x − py = 0.

The equation of the line CC1 is of the form
x − 1
1 − 0

= y − 0
0 − n

⇔ nx + y − n = 0.

The equation of the line CF is of the form
x − 1
1 − 0

= y − 0
0 − q

⇔ qx + y − q = 0.

The equation of the line EF is of the form
x − p
p − 0

= y − (1 − p)
(1 − p) − q

⇔ (1 − p − q)(x − p) − p(y − (1 − p)) = 0

⇔ (1 − p − q)x − py + pq = 0.

Since A2 = EF ∩ AA1, the coordinates of the point A2 satisfy the system of
equations: {

(m + n − 1)x + mny − mn = 0
(1 − p − q)x − py + pq = 0
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Solving this system, we have

A2 =
(

mnp(q − 1)
mnp + mnq − mn − mp − np + p

, mnp + mnq − mpq − npq − mn + pq
mnp + mnq − mn − mp − np + p

)
.

Since P = BE ∩ CF , the coordinates of the point P satisfy the system of
equations: {

(1 − p)x − py = 0
qx + y − q = 0

Solving this system, we have :

P =
(

qp
pq−p+1

, q(1−p)
pq−p+1

)
.

The equation of the line AP is of the form :

x − qp
pq−p+1
qp

pq−p+1
=

y − q(1−p)
pq−p+1

q(1−p)
pq−p+1

− 1
.

Simplifying the equation of the line AP , we have :

(2pq − p − q + 1)x + pqy − pq = 0.

Since G = AP ∩ BC, the coordinates of the point G satisfy the system of
equation : {

(2pq − p − q + 1)x + pqy − pq = 0
y = 0

Thus, G =
(

pq
2pq − p − q + 1

, 0
)
.

The equation of the line GE is of the form
x − pq

2pq − p − q + 1
pq

2pq − p − q + 1
− p

= y − 0
0 − 1 + p

⇔ (2pq − p − q + 1)x − (2pq− p)y − pq = 0

The equation of the line GF is of the form
x − pq

2pq − p − q + 1
pq

2pq − p − q + 1
− 0

= y − 0
0 − q

⇔ (2pq − p − q + 1)x + py − pq = 0.

Since C2 = GE ∩ B1C1, the coordinates of the point C2 satisfy the system of
equations {

(m + n − 1)x + my − mn = 0
(2pq − p − q + 1)x − (2pq − p)y − pq = 0

Thus

C2 =

(
mp(2nq − n− q)

2npq + mq − np− 2pq −m + p
, −2mnpq −mnp−mnq −mpq − npq + mn + pq

2npq + mq − np− 2pq −m + p

)
.

Since B2 = GF ∩ B1C1, the coordinates of the point B2 satisfy the system of
equations {

(2pq − p − q + 1)x + py − pq = 0
(m + n − 1)x + my − mn = 0

Thus, B2 =
(

mp(2nq−n−q)
2npq+mq−np−2pq−m+p

, −2mnpq−mnp−mnq−mpq−npq+mn+pq
2npq+mq−np−2pq−m+p

)
.

Consider the determinant
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∆ =

∣∣∣∣ xB2 − xA2 xC2 − xA2

yB2 − yA2 yC2 − yA2

∣∣∣∣ = (xB2 − xA2) (yC2 − yA2) − (yB2 − yA2) . (xC2 − xA2) .

With a small help from Maple XVIII, we find the result:

∆ = 0.

Thus, A2, B2, C2 are collinear.

3. The Projective model of the Affine Space

Using the projective model of the affine space is a method to create new problems.
From the projective problem, we choose different lines at infinity than we obtain
different affine problems that do not need to prove. [3]
If we choose the line d at infinity passing through two points B, C then two lines
AB and EP are parallel and two lines FP and AE are also parallel. The quadri-
lateral AEPF is a parallelogram. We obtain the following problem in the affine
geometry.

Theorem 3.1. Given two rays Ax and Ay. Let E and F be points on Ax, Ay,
respectively. Construct the parallelogram AEPF . Ez and Ft are parallel to AP.
An arbitrary line d meets Ax, Ay at B1, C1, respectively. Through points B1, C1

draw lines that parallel to Ay, Ax and meet Ft at B2 and Ez at C2, respectively.
Through the point A draw line that is parallel to B1C1 and meet the line EF at
A2. Prove that A2, B2, C2 are collinear.

Figure 3. The projective model of the affine space

We can prove the theorem directly. We see that, A is on the midline of the
trapezoid EC2B2F. Thus, the distance from A to EC2 is equal to the distance
from A to B2F. It follows
EC2

FB2
=

SAEC2

SAFB2
=

SAEC2

SAB1C2
.

SAB2C1

SAFB2
.

SAB1C2

SAB2C1
= AE

AB1
. AC1

AF
(SAC2B1 = SAC1B1 =

SAB2C1) (1).
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We have :
AE
AB1

. AC1

AF
=

SA2AE

SA2AB1
.

SA2AC1

SA2AF
=

SA2AE

SA2AF
= A2E

A2F
(SA2AB1 = SA2AC1) (2).

Since (1), (2) and the converse part of Thales theorem, A2, B2, C2 are collinear.
[4]
If we choose the line d at infinity passing through the point A1 and not passing
through the other given points then the quadrilateral BC1B1C is a trapezium of
the affine space. We obtain the following problem in the affine geometry

Theorem 3.2. Given a triangle ABC. Let the line d parallels to the line BC and
meets AB, AC at C1, B1, respectively. GEF is a cevian triangle of the triangle
ABC (G ∈ BC, E ∈ CA, F ∈ AB). GE ∩ CC1 = C2 ; GF ∩ BB1 =
B2. Let the line passing through A parallels to BC and meets EF at A2. Prove
that A2, B2, C2 are collinear.

Figure 4. The projective model of the affine space

The direct proof of the theorem is as follows
We have

A2E
A2F

= AE
AF

. sin Â2AE

sin Â2AF
= AE

AF
. sin ÂCB

sin ÂBC
= AE

AF
. AB

AC
.

Similarly,

B2F
B2G

= BF
BG

. sin ÂBB1

sin ĈBB1
= BF

BG
. AB1

CB1
. BC

BA
.

C2G
C2E

= CG
CE

. sin B̂CC1

sin ÂCC1
= CG

CE
. BC1

AC1
. AC

BC
.

On the other hand,
AB1

CB1
= AC1

BC1
, AE

CE
. CG

BG
. BF

AF
= 1.

Thus,
A2E
A2F

. B2F
B2G

. C2G
C2E

= 1.

By Menelaus theorem, we have that A2, B2, C2 are collinear. [4]
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