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Abstract. We systematically investigate properties of various triangle centers
(such as orthocenter or incenter) located on the four faces of a tetrahedron. For
each of six types of tetrahedra, we examine over 100 centers located on the four
faces of the tetrahedron. Using a computer, we determine when any of 16 con-
ditions occur (such as the four centers being coplanar). A typical result is: The
lines from each vertex of a circumscriptible tetrahedron to the Gergonne points
of the opposite face are concurrent.
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1. Introduction

Over the centuries, many notable points have been found that are associated with
an arbitrary triangle. Familiar examples include: the centroid, the circumcenter,
the incenter, and the orthocenter. Of particular interest are those points that
Clark Kimberling classifies as “triangle centers”. He notes over 100 such points
in his seminal paper [10].

Given an arbitrary tetrahedron and a choice of triangle center (for example, the
circumcenter), we may locate this triangle center in each face of the tetrahedron.
We wind up with four points, one on each face. What can be said about these
points? For example, do the 4 points form a tetrahedron similar to the original
one? Could these 4 points ever lie in a plane? Might they form a regular tetrahe-
dron? Consider the 4 lines from the vertices of the tetrahedron to the centers in
the opposite faces. Do these 4 lines concur? Might they have the same length?

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.

13

http://www.journal-1.eu/
mailto:stan.rabinowitz@comcast.net
http://www.StanleyRabinowitz.com/


14 Arrangement of Central Points on the Faces of a Tetrahedron

In this paper, we investigate such questions for a large collection of triangle centers
and for various types of tetrahedra.

A typical result is: The lines from each vertex of a circumscriptible tetrahedron
to the Gergonne points of the opposite face are concurrent.

For information about what you need to know about triangle centers and center
functions, we give a short overview in Appendix A.

We make extensive use of areal coordinates (also known as barycentric coordi-
nates) when analyzing points associated with triangles, such as the faces of a
tetrahedron. For the reader not familiar with areal coordinates, we give the ba-
sics in Appendix B.

For points, lines, and planes in space, we make heavy use of tetrahedral coordi-
nates. For the reader not familiar with tetrahedral coordinates, we present the
needed information in Appendix C.

Throughout this paper, the notation [XY Z] will denote the area of triangle XYZ.

2. Coordinates for the Face Centers

When referring to an arbitrary tetrahedron (the reference tetrahedron), we will
usually label the vertices A1, A2, A3, and A4. The lengths of the sides of the
base (4A1A2A3) will be a1, a2, and a3, with edge ai opposite vertex Ai. In the
tetrahedron, the edge opposite the edge of length ai will have length bi. See Figure
1a.

Figure 1. edge labeling

Thus, we have

A2A3 = a1, A3A1 = a2, A1A2 = a3, A1A4 = b1, A2A4 = b2, A3A4 = b3.

If the tetrahedron has its opposite edges of equal length, then the tetrahedron is
called an isosceles tetrahedron. See Figure 1b (not to scale). It is clear that in an
isosceles tetrahedron, the four faces are congruent because they each have sides of
length a1, a2, a3. In a sense, the isosceles tetrahedon “looks the same” from each
vertex. This four-fold symmetry makes the isosceles tetrahedron be the figure
in space that corresponds to the equilateral triangle in the plane. An equilateral
triangle has 3 identical sides and an isosceles tetrahedron has 4 identical faces. The
face of the tetrahedron opposite vertex Ai will be called face i of the tetrahedron.
Its area will be denoted by Fi.
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If (x1, x2, x3) are the areal coordinates for a triangle center, then the tetrahedral
coordinates for the corresponding center on face 4 of our reference tetrahedron
A1A2A3A4 is (x1, x2, x3, 0). To see why this is true, consider the center P on face
4 (triangle A1A2A3) of the tetrahedron. Then

[PA1A2A4] : [PA2A3A4] : [PA3A1A4] = [PA1A2] : [PA2A3] : [PA3A1]

since these 4 tetrahedra have a common altitude from A4.

We will frequently have occasion to pick a point on each face of the tetrahedron.
In such a case, the point on face i will be labelled Pi. It is often necessary to
locate such a point based on its areal coordinates in face i. We must be careful
how we set up the coordinate system on each face. Note that in an arbitrary
tetrahedron, each face has the property that the labels associated with each edge
(ai or bi) contains one label with subscript 1, one with subscript 2, and one with
subscript 3. In order to maintain the 4-fold symmetry exhibited by an isosceles
tetrahedron, under the mapping A1 → A2 → A3 → A4 we want the faces to
transform as follows:

4A4A3A2 →4A3A4A1 →4A2A1A4 →4A1A2A3.

Note that in each face, our labelling starts with the vertex opposite the edge whose
label has subscript 1, then proceeds to the vertex opposite the edge whose label
has subscript 2 and finally ends with the edge whose label has subscript 3. This
induces the following correspondence between the edges:

(a1, b2, b3, b1, a2, a3)→ (b1, a2, b3, a1, b2, a3)

→ (b1, b2, a3, a1, a2, b3)

→ (a1, a2, a3, b1, b2, b3).

This mapping is shown in figure 2.

Figure 2. mapping

Let us now consider the mapping which takes A1 into A2 in this 4-fold symmetry.
We start, by finding the tetrahedral coordinates for the point, P1, with areal
coordinates (x1, x2, x3) in face 1 of the reference tetrahedron. The first coordinate
“x1” refers to the area formed by the point P1 and the side of the triangle with
a “1” as subscript. In this case, face 1 has sides of length a1, b2, and b3, so
the side we need is the side of length a1. On face 1, this side is opposite vertex
A4 of the reference tetrahedron and so the “x1” coordinate will appear as the 4th
tetrahedral coordinate. Proceeding in this manner, we find that P1 has tetrahedral
coordinates (0, x3, x2, x1). This point wants to map to a point, P2, with the same
areal coordinates in face 2. In face 1 (4A4A3A2), the coordinates correspond to
areas associated with edges a1, b2, and b3. In face 2 (4A3A4A1), the corresponding
edges are b1, a2, and b3. Point P2 has tetrahedral coordinates (x3, 0, x1, x2) because
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on face 2, edge b1 is opposite vertex A3 (so x1 moves to the 3rd coordinate in the
tetrahedral system), a2 is opposite vertex A4 (so x2 moves to the 4th coordinate
in the tetrahedral system), and b3 is opposite vertex A1 (so x3 moves to the 1st
coordinate in the tetrahedral system).

In other words, given a point in the plane with areal coordinates (x1, x2, x3), the
corresponding points in the faces of our reference tetrahedron are:

Face 1 : (0, x3, x2, x1)

Face 2 : (x3, 0, x1, x2)

Face 3 : (x2, x1, 0, x3)

Face 4 : (x1, x2, x3, 0)

where we have associated face 4 with the original plane triangle.

If the original point is a center, with areal coordinates

(f(a1, a2, a3), f(a2, a3, a1), f(a3, a1, a2)) ,

then the corresponding points on the faces of the tetrahedron are:

Face 1 : (0, f(b3, b2, a1), f(b2, a1, b3), f(a1, b3, b2))

Face 2 : (f(b3, b1, a2), 0, f(b1, a2, b3), f(a2, b3, b1))

Face 3 : (f(b2, b1, a3), f(b1, a3, b2), 0, f(a3, b2, b1))

Face 4 : (f(a1, a2, a3), f(a2, a3, a1), f(a3, a1, a2), 0).

Kimberling [11] and [12] has collected the trilinear coordinates for over 40,000
centers associated with a triangle. He lists the trilinear coordinates in terms of
the sides a, b, c of the reference triangle and trigonometric functions of A, B, C,
the angles of the reference triangle. Only the first coordinate is given, for if this
coordinate is f(a, b, c, A,B,C), then the other coordinates are f(b, c, a, B, C,A)
and f(c, a, b, C,A,B) respectively.

We wish to study points associated with a tetrahedron based on the lengths of
the 6 edges of the tetrahedron. The six edge lengths are independent quantities.
Involving other quantities such as the face areas or trigonometric functions of the
face or dihedral angles would yield expressions containing dependent variables
and would complicate the process of determining if such expressions are identi-
cally 0 for all tetrahedra. We thus need to remove the presence of angles from
Kimberling’s data. Since all the trigonometric functions present can be expressed
in terms of sine’s and cosine’s of the angles of the reference triangle, the following
formulas suffice to remove all reference to these angles:

sinA =
2K

bc

cosA =
b2 + c2 − a2

2bc

where K denotes the area of the reference triangle. The first formula comes from
the well-known area formula: K = 1

2
bc sinA; and the second formula is The Law

of Cosines. Similar expressions hold for angles B and C.

Factors (such as K or a + b + c) that would be common to all three coordinates
are then removed.
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The presence of a K in the denominator of any fraction involved is cumbersome
and was removed by replacing terms of the form x/(y + zK) by x(y− zK)/(y2 −
z2K2). This leaves all square roots in the numerators.

The variable K is then replaced by its equivalent expression in terms of the sides
of the triangle (Heron’s Formula), namely

K =
1

4

√
2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4.

Since tetrahedral coordinates are barycentric, if (x, y, z, w) are the coordinates
for one of the above centers in our reference tetrahedron, then the tetrahedral
coordinates for the corresponding center in a tetrahedron with vertices P1, P2, P3,
and P4 are xP1 + yP2 + zP3 +wP4, where xP1 denotes the scalar product of x and
the vector P1, etc. Algorithmically, the desired coordinates are the dot product
of the vectors (x, y, z, w) and (P1, P2, P3, P4).

3. Types of Tetrahedra

The types of tetrahedra investigated are listed in the following table.

Types of Tetrahedra Considered
Tetrahedron Type Geometric Definition Algebraic Condition i = 1, 2, 3
General no restrictions placed on the edges none
Isosceles faces are congruent ai = bi
Circumscriptible edges are tangent to a sphere ai + bi = constant
Isodynamic symmedians are concurrent aibi = constant
Orthocentric opposite edges are perpendicular a2i + b2i = constant
Harmonic n/a 1/ai + 1/bi = constant

Only tetrahedra that have the requisite 4-fold symmetry were studied. Thus,
for example, trirectangular tetrahedra are not included in this study. We would
have liked to have investigated isogonic tetrahedra (ones in which the cevians
to the points of tangency of the insphere are concurrent, ([2, p. 328]), but the
corresponding algebraic condition was too messy to be manageable. The concept
of a harmonic tetrahedron was invented for this study and has a few interesting
properties, but perhaps not enough to warrant future study. The other types of
tetrahedra are well known and information about them can be found in [2].

4. Methodology

For this study, we considered the first 101 triangle centers listed in [11], X1 through
X101, as well as a few other centers, listed in the following table.
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Triangle Centers Considered
Triangle Center Trilinears
X1–X101 see [11]
Y1 1/(a2(b+ c)− abc)
Y2 a/((b− a)(c− a))
Y3 a2(b+ c)
Y4 1/(a2(b+ c))
Y5 a/(b2 + c2)
Y6 a2(b2 + c2)
Y7 1/(a2(b2 + c2))
Y8 (b2 + c2)/a
Y9 a(b+ c− 2a)
Y10 1/(a(b+ c− 2a))
Y11 a/(b+ c− 2a)
Y12 a2(b+ c− 2a)
Y13 1/(a2(b+ c− 2a))
Y14 b+ c− bc/a
r-power point ar

Z1 ar(b+ c)
Z2 ar(b2 + c2)
Z3 ar(b+ c− a)
Z4 ar(b+ c− 2a)
Z5 ar(b2 + c2 − a2)
Z6 ar(b3 + c3)
Z7 ar(b2 + c2 + bc)
Z8 2ar + br + cr

Z9 (br + cr)/a
Z10 (br + cr − ar)/a
Z11 (br + cr + 2ar)/a
power center arg[b, c]
arbitrary center f [a, g[b, c]]
areal center f [a, b, c]/a

For each type of tetrahedron considered, and for each triangle center considered,
we computed the tetrahedral coordinates of these centers on each face of the
tetrahedron.

Once we had located these four centers, we then used Mathematica to run a bar-
rage of tests on these four points to see if they satisfied any special properties.
Since these tests involved algebraic coordinates (i.e. we were not looking at spe-
cific tetrahedra with numerical sides), any results found constitute a proof that
the result is true and not merely a conjecture based on numerical evidence. These
results are stated in sections 5 through 10. The proofs are by coordinate geome-
try, mechanically performed by the Mathematica program which was written to
compute all the necessary lengths and coordinates and then confirm the claimed
results symbolically.

Most of these results are new, however, some of them may have previously ap-
peared in the literature. We give references, when known. A few related results
appeared as problem 3 in the 15th Summer Conference of the International Math-
ematical Tournament of Towns, [15].
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First a few definitions.

Definition 1. The original tetrahedron is known as the reference tetrahedron.

Definition 2. The tetrahedron formed by the four centers is called the central
tetrahedron.

Definition 3. The line segment from a vertex of the reference tetrahedron to the
center on the opposite face is called a cevian.

Definition 4. Four skew lines in space are said to form a hyperbolic group if there
is an infinite number of lines that meet all four of these lines.

According to Altshiller-Court ([2, p. 10]), “Such a group is often the space analog
of three concurrent lines in the plane.”

Definition 5. The four skew lines are part of an infinite family of lines that form
a ruled surface known as a hyperboloid of one sheet.

Definition 6. By a space center of a tetrahedron, we mean one of: centroid,
circumcenter, incenter, Monge point, or Euler point. These are described in the
following table.

Tetrahedron Centers Considered
Space Center Description
centroid intersection point of medians
circumcenter center of circumscribed sphere
incenter center of inscribed sphere
Monge point symmetric of circumcenter with respect to centroid
Euler point center of 12-point sphere

More background information about these centers is given in Appendix E.

The properties that were checked for are listed in the table below.

Properties Considered
Property 1 The cevians to the four centers are concurrent.
Property 2 The cevians to the four centers form a hyperbolic group.
Property 3 The four centers are coplanar.
Property 4 The four centers are collinear.
Property 5 The normals to the faces at the centers concur.
Property 6 The faces of the central tetrahedron are parallel to the faces

of the reference tetrahedron.
Property 7 The central tetrahedron is isosceles.
Property 8 The central tetrahedron is regular.
Property 9 The central tetrahedron is isodynamic.
Property 10 The central tetrahedron is circumscriptible.
Property 11 The central tetrahedron is orthocentric.
Property 12 The central tetrahedron is similar to the reference tetrahedron.
Property 13 The cevians to the four centers have the same length.
Property 14 The central tetrahedron has a space center in common

with some space center of the reference tetrahedron.
Property 15 The central tetrahedron has a space center on the Euler line

of the reference tetrahedron.
Property 16 The reference tetrahedron has a space center on the Euler line

of the central tetrahedron.
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If the cevians concurred, we also checked to see if the point of concurrence was
a space center of the reference tetrahedron or if it lied on the Euler line of the
reference tetrahedron. Also, if the four cevians formed a hyperbolic group, we
computed the center of the hyperboloid for which these cevians were generators
and checked this point to see if it was a space center of the reference tetrahedron
(or on its Euler line).

To find the center of the hyperboloid, we used the following result:

Proposition 4.1 ([13]). If L1, L2, and L3 are three lines that determine a hyper-
boloid of one sheet, then if one draws planes through each of these lines parallel
to the two others, then we get a parallelepiped. The center of this parallelepiped is
the center of the hyperboloid.

Thus, our test was as follows: Use formula 17 to find the plane through L1 and
parallel to L2. (See Appendix D for formulas using tetrahedral coordinates.)
Let X be the point of intersection of L3 with this plane (found via formula 18).
Similarly, find the plane through L1 parallel to L3. Let Y be the intersection of
this plane and L2. Then the center of the hyperboloid is the midpoint of segment
XY .

To make some of the computation of properties 1-16 easier, we first checked the
property for a specific tetrahedron with numerical sides. If the property was false
(using exact arithmetic) for this numerical case, then we did not bother checking
to see if the property was algebraically true in general.

5. Results found for Arbitrary Tetrahedra

The following results were discovered and proven by our computer program.

Theorem 5.1. Consider the centroids on each face of an arbitrary tetrahedron.
Then
(a) The faces of the central terahedron are parallel to the corresponding faces of
the reference tetrahedron.
(b) The cevians to the centroids concur at the centroid of the reference tetrahedron.
(c) The central tetrahedron is similar to the reference tetrahedron.
(d) The central centroid coincides with the reference centroid.
(e) The central circumcenter coincides with the reference Euler point.
(f) The central Monge point lies on the reference Euler line (at 2/3).
(g) The central Euler point lies on the reference Euler line (at 8/9).
(h) The reference circumcenter lies on the central Euler line (at 4).
(i) The reference Monge point lies on the central Euler line (at -2).

Theorem 5.2. For an arbitrary tetrahedron, the normals at the circumcenters of
each face concur at the circumcenter of the reference tetrahedron.

Theorem 5.3. For an arbitrary tetrahedron, the lines to the r-power points form
a hyperbolic group. These include the incenters, the centroids, and the symmedian
points.

Note. Results found for specific tetrahedra that are immediate consequences of
results in this section for arbitrary tetrahedra will not necessarily be listed again
below.
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Theorem 5.4. For fixed r, the 2ar + br + cr points of an arbitrary tetrahedron
form a central tetrahedron that has the same centroid as the reference tetrahedron.

6. Results found for Isosceles Tetrahedra

The following results were discovered and proven by our computer program.

Theorem 6.1. Consider an arbitrary center on each face of an isosceles tetrahe-
dron. (The same type of center is considered on each face.) Then
(a) The cevians to these centers have the same length.
(b) The central tetrahedron is isosceles.
(c) The central tetrahedron has the same centroid as the reference tetrahedron.
(d) The cevians form a hyperbolic group.

7. Results found for Circumscriptible Tetrahedra

The following results were discovered and proven by our computer program.

Theorem 7.1. For a circumscriptible tetrahedron (in which ai+bi = t, i = 1, 2, 3),
(a) The cevians to the Gergonne points concur.

The 4th coordinate of the intersection point is
(a2 + a3 − a1)(a3 + a1 − a2)(a1 + a2 − a3).

(b) The cevians to the Nagel points concur.
The 4th coordinate of the intersection point is a1 + a2 + a3 − 2t.
This equals S

2
− S4 where Si is the sum of the edges at Ai and S =

∑
Si.

(c) The Feuerbach points are coplanar.
(d) The normals at the incenters concur.
(e) The normals at the X40 points concur.

Note that X40 is collinear with the incenter and circumcenter.

Theorem 7.2. For a circumscriptible tetrahedron, the lines to the following tri-
angle centers form a hyperbolic group:
(a) Gergonne points (and their inverses)
(b) Nagel points (and their inverses)
(c) Mittenpunkts (and their inverses)
(d) X41 points (and their inverses)
(e) Feuerbach points (and their inverses).

8. Results found for Isodynamic Tetrahedra

The following results were discovered and proven by our computer program.

Theorem 8.1. For an isodynamic tetrahedron,
(a) The cevians to any power point concur.

The 4th coordinate of the intersection point is a1a
r+1
2 a3.

(b) The Feuerbach points are coplanar.
(c) The X44 points are coplanar.
(d) The Lemoine axes are coplanar.
(e) The circumcenter of the X76 points (3rd power point inverses) coincides with
the reference centroid.



22 Arrangement of Central Points on the Faces of a Tetrahedron

Theorem 8.2. For an isodynamic tetrahedron, the lines to the following triangle
centers form a hyperbolic group:
(a) Spieker centers (and their inverses)
(b) X37 points (and their inverses)
(c) X38 points (and their inverses)
(d) Brocard midpoint (and their inverses)
(e) X42 points (and their inverses)
(f) X106 points
(g) X107 points
(h) X108 points
(i) X109 points
(j) X110 points
(k) X111 points

9. Results found for Orthocentric Tetrahedra

The following results were discovered and proven by our computer program.

Theorem 9.1. For an orthocentric tetrahedron (in which a2i + b2i = t, i = 1, 2, 3),
(a) The cevians to the orthocenters concur.

The 4th coordinate of the intersection point is
(a22 + a23 − a21)(a23 + a21 − a22)(a21 + a22 − a23).

(b) The cevians to the isotomic conjugates of the orthocenters concur.
The 4th coordinate of the intersection point is a21 + a22 + a23 − 2t. This equals
T
2
− T4 where Ti is the sum of the squares of the edges at Ai and T =

∑
Ti.

(c) The centroid of the 9-point centers coincides with the reference centroid.
(d) The centroid of the orthocenters coincides with the reference Monge point.
(e) The circumcenter of the orthocenters lies on the reference Euler line.
(f) The Monge point of the orthocenters lies on the reference Euler line.
(g) The centroid of the X53 points coincide with the reference Monge point.

Theorem 9.2. For an orthocentric tetrahedron,
(a) The normals at the circumcenters concur.
(b) The normals at the centroids concur.
(c) The normals at the orthocenters concur.
(d) The normals at the nine point centers concur.
(e) The normals at the De Longchamps points concur.

Note that these five centers lie on the Euler line and have constant ratio distances
apart.

Theorem 9.3. For an orthocentric tetrahedron, the lines to the following triangle
centers form a hyperbolic group:
(a) circumcenters
(b) Crucial points (and their inverses)
(c) X25 points
(d) X48 points (and their inverses)

10. Results found for Harmonic Tetrahedra

The following results were discovered and proven by our computer program.
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Theorem 10.1. For a harmonic tetrahedron,
(a) The Feuerbach points are coplanar.
(b) The cevians to the X117 points (and their isotomic conjugates, the X102
points) concur.

Theorem 10.2. For a harmonic tetrahedron, the lines to the following triangle
centers form a hyperbolic group:
(a) X43 points (and their inverses)
(b) X102 points
(c) X117 points

Note that X43 = 1/b + 1/c − 1/a, X102 = a(1/b + 1/c − 1/a), and X117 =
(1/b+ 1/c− 1/a)/a.

11. General Results about Concurrent Cevians

The data collected by our program suggested (but did not prove) the following
results. Thus, independent proofs are needed.

Lemma 11.1. Let P1 = (0, y1, z1, w1) and P2 = (x2, 0, z2, w2) be two points on
faces 1 and 2 of the reference tetrahedron. Then the condition that the lines AiPi,
i = 1, 2 intersect (or be parallel) is

z1
w1

=
z2
w2

.

Proof. From formulas 7 and 11, the condition is∣∣∣∣∣∣∣∣
0 y1 z1 w1

x2 0 z2 w2

1 0 0 0
0 1 0 0

∣∣∣∣∣∣∣∣ = 0.

which reduces to the formula claimed. �

Geometric interpretation. Let P1 and P2 be points on the faces opposite
vertices A1 and A2, respectively, of tetrahedron A1A2A3A4. Then lines A1P1 and
A2P2 intersect if and only if

[P1A2A3][P2A4A1] = [P1A2A4][P2A1A3].

Here “intersect” also includes being parallel.

Figure 3 shows a top view of tetrahedron A1A2A3A4 with a point taken on faces
1 and 2. The condition is that the product of the areas of the yellow triangles
equals the product of the areas of the green triangles.

Lemma 11.2. If AiPi, i = 1, 2, 3, meet in pairs, then all three lines meet at a
point.

Proof. Let the lines meet in pair at points Q1, Q2, Q3. Then the plane through Q1,
Q2, and Q3 contains the three lines and hence the three vertices A1, A2, A3. Thus
A1, A2, A3 would lie on a plane other than the base plane, a contradiction. �
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Figure 3. A1P1 intersects A2P2 if product of yellow areas equals
product of green areas

Corollary 11.3. Let P1 = (0, y1, z1, w1), P2 = (x2, 0, z2, w2), P3 = (x3, y3, 0, w3)
be three points on faces 1, 2, and 3 of the reference tetrahedron. Then the condition
that the lines AiPi, i = 1, 2, 3 concur (or be parallel) is

z1
w1

=
z2
w2

,
y1
w1

=
y3
w3

,
x2
w2

=
x3
w3

.

Corollary 11.4 (The Concurrence Condition). The condition for the con-
currence of cevians to two centers (each with center function F (a, b, c)) on faces
1 and 2 of the reference tetrahedron is

F (b2, a1, b3)F (a2, b3, b1) = F (a1, b3, b2)F (b1, a2, b3).

Theorem 11.5. If P1 and P2 are points on faces 1 and 2 of our reference tetra-
hedron such that the cevians to P1 and P2 meet, then the cevians to the isotomic
conjugates of P1 and P2 meet.

Proof. In areal coordinates, the isotomic conjugate of (x, y, z) is (1/x, 1/y, 1/z).
The concurrence condition therefore becomes

1

F (b2, a1, b3)
· 1

F (a2, b3, b1)
=

1

F (a1, b3, b2)
· 1

F (b1, a2, b3)

which is equivalent to the original condition. �

Corollary 11.6 ([2, p. 139]). If the four cevians to corresponding face centers
concur, then the four cevians to the isotomic conjugates of these centers also
concur.

Corollary 11.7. If cevians to the triangle centers with center function F (a, b, c)
concur, then so do cevians to the centers with center function F (a, b, c)r for any
r.

Theorem 11.8. The centroid is the only triangle center with the property that in
any isosceles tetrahedron, the cevians to these face centers concur.

Proof. Suppose F (a, b, c) = af(a, b, c) is such a center function. The algebraic
condition for this to be true is obtained by substituting bi = ai in the concurrence
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condition to get F (a1, a2, a3)
2 = F (a2, a1, a3)

2. This implies that

(1) F (a1, a2, a3) = −F (a2, a1, a3)

or

(2) F (a1, a2, a3) = F (a2, a1, a3)

for all a1, a2, and a3.

If condition (1) holds, then we would have

F (a1, a2, a3) = −F (a2, a1, a3)

F (a2, a3, a1) = −F (a3, a2, a1)

F (a3, a1, a2) = −F (a1, a3, a2)

since the equality must be true for all values of its arguments. Since F (a, b, c) =
F (a, c, b), multiplying these three equations together yields 1 = −1, a contradic-
tion.

If condition (2) holds, then we would have

F (a1, a2, a3)

F (a2, a3, a1)
= 1

or

F (a1, a2, a3) : F (a2, a3, a1) : F (a3, a1, a2) = 1 : 1 : 1

so that F represents the centroid. �

Corollary 11.9. The centroid is the only triangle center with the property that
in any tetrahedron, the cevians to these face centers concur.

Proof. Since the cevians concur for any tetrahedron, they must surely concur for
any isosceles tetrahedron. But the previous theorem rules this possibility out. �

The following lemma is well known:

Lemma 11.10 (Power Lemma). If f(x) is a nonzero function satisfying

f(xy) = f(x)f(y)

for all x and y, then f(x) = xr for some constant r.

Theorem 11.11. The power points are the only triangle centers with the property
that in any isodynamic tetrahedron, the cevians to these face centers concur.

Proof. The concurrence condition becomes

F (
t

a2
, a1,

t

a3
)F (a2,

t

a3
,
t

a1
) = F (a1,

t

a3
,
t

a2
)F (

t

a1
, a2,

t

a3
)

for all a1, a2, a3, and t. We can write this as

F ( t
a2
, a1,

t
a3

)

F (a1,
t
a2
, t
a3

)
=
F ( t

a1
, a2,

t
a3

)

F (a2,
t
a1
, t
a3

)
.

Since this is true for all a2, it will be true if we replace a2 by t/a2 to get

F (a2, a1,
t
a3

)

F (a1, a2,
t
a3

)
=
F ( t

a1
, t
a2
, t
a3

)

F ( t
a2
, t
a1
, t
a3

)
.
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Since F is homogeneous, we have

F (a2, a1,
t
a3

)

F (a1, a2,
t
a3

)
=
F ( 1

a1
, 1
a2
, 1
a3

)

F ( 1
a2
, 1
a1
, 1
a3

)
.

Let t = a3x to get

F (a2, a1, x)

F (a1, a2, x)
=
F ( 1

a1
, 1
a2
, 1
a3

)

F ( 1
a2
, 1
a1
, 1
a3

)
.

The right-hand side is independent of x, and so we can define

(3) G(a1, a2) =
F (a2, a1, x)

F (a1, a2, x)
.

Thus

F (a, b, c) = G(a, b)F (b, a, c) = G(a, b)G(b, a)F (a, b, c)

and so

(4) G(a, b)G(b, a) = 1

for all a and b. Similarly,

F (a, b, c) = G(a, b)F (b, a, c) = G(a, b)F (b, c, a)

= G(a, b)G(b, c)F (c, b, a) = G(a, b)G(b, c)F (c, a, b)

= G(a, b)G(b, c)G(c, a)F (a, c, b) = G(a, b)G(b, c)G(c, a)F (a, b, c)

and so

(5) G(a, b)G(b, c)G(c, a) = 1

for all a, b and c. Using the homogeneity of F in equation (3), we can divide all
arguments by a2 to get

G(a1/a2, 1) =
F (1, a1/a2, x/a2)

F (a1/a2, 1, x/a2)
=
F (a2, a1, x)

F (a1, a2, x)
= G(a1, a2).

Thus, if we define

g(x) = G(x, 1),

then we get analogs of equations (4) and (5):

g(
a

b
)g(

b

a
) = 1

and

g(
a

b
)g(

b

c
)g(

c

a
) = 1.

Now

g(
a

b
)g(

b

c
) = 1/g(

c

a
) = g(

a

c
).

Let x = a/b and y = b/c to get

g(x)g(y) = g(xy)
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for all x and y. By the Power Lemma, we must have g(x) = xr for some r. Hence

F (a, b, c) : F (b, c, a) : F (c, a, b) =
F (a, b, c)

F (a, b, c)
:
F (b, c, a)

F (a, b, c)
:
F (c, a, b)

F (a, b, c)

= 1 : G(b, a) : G(c, a)

= 1 : g(
b

a
) : g(

c

a
)

= 1 :
( b
a

)r
:
( c
a

)r
= ar : br : cr

and thus the center is a power point. �

Theorem 11.12. Suppose the edges of a tetrahedron satisfy the condition h(ai)+
h(bi) = t, i = 1, 2, 3, for some function h(x) and some constant, t. Then the
cevians to the face centers with (areal) center function [h(b)+h(c)−h(a)]r concur
for any r.

Proof. The concurrence condition is

[h(a1) + h(b3)− h(b2)]
r[h(b3) + h(b1)− h(a2)]

r

= [h(b3) + h(b2)− h(a1)]
r[h(a2) + h(b3)− h(b1)]

r.

This is equivalent to

[h(a1) + h(b3) + h(a2)− t]r[h(b3) + h(b1) + h(b2)− t]r

= [h(b3) + h(b2) + h(b1)− t]r[h(a2) + h(b3) + h(a1)− t]r

which is easily seen to be an identity. �

Corollary 11.13. In a circumscriptible tetrahedron, the cevians to the face cen-
ters with areal center function (b + c − a)r concur. This includes the Gergonne
point and its isotomic conjugate, the Nagel point.

Corollary 11.14. In an orthocentric tetrahedron, the cevians to the face centers
with areal center function (b2 + c2 − a2)r concur. This includes the orthocenter
and its isotomic conjugate.

Corollary 11.15. In a harmonic tetrahedron, the cevians to the face centers with
areal center function (1/b+ 1/c− 1/a)r concur. This includes the X117 point and
its isotomic conjugate, the X102 point.

Corollary 11.16. In an isodynamic tetrahedron, the cevians to the power points
concur. This includes the incenter, centroid, symmedian point and their isogonal
and isotomic conjugates.

Proof. Take h(x) = log x in the previous theorem. �

Conjecture 11.17. Suppose the edges of a tetrahedron satisfy the condition h(ai)+
h(bi) = t, i = 1, 2, 3, for some power function h(x) = xn and some constant, t. If
cevians to four corresponding face centers are concurrent, then the center function
for these face centers must be of the form [h(b) + h(c)− h(a)]r for some r.

Theorem 11.18. If cevians to the points h(b)+h(c)−h(a) concur, then the edges
of the tetrahedron satisfy h(ai) + h(bi) = t, for i = 1, 2, 3.
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Proof. The concurrency condition (for centers on faces 1 and 2) becomes

[h(a1) + h(b3)− h(b2)][h(b3) + h(b1)− h(a2)]

= [h(b3) + h(b2)− h(a1)][h(a2) + h(b3)− h(b1)].

Simple algebra transforms this into the equation

h(b3)[h(a1) + h(b1)] = h(b3)[h(a2) + h(b2)]

from which we conclude that

h(a1) + h(b1) = h(a2) + h(b2).

By symmetry, analogous results are true for any two faces of the reference tetra-
hedron, so h(ai) + h(bi) is constant for all i. �

Corollary 11.19 ([2, p. 299]). If cevians to the Nagel points concur, then the
tetrahedron is isodynamic.

Corollary 11.20 ([2, p. 299]). If cevians to the Gergonne points concur, then the
tetrahedron is isodynamic.

Corollary 11.21. If cevians to the orthocenters concur, then the tetrahedron is
orthocentric.

Corollary 11.22. If cevians to the (1/b + 1/c − 1/a) centers concur, then the
tetrahedron is harmonic.

Corollary 11.23. For a fixed r 6= 0, if cevians to the r-power points concur, then
the tetrahedron is isodynamic.

This generalizes proposition 841 of [2] (which was for the Symmedian point only).

Proof. The ar centers are the same as the arbrcr/ar centers, so the result follows
by taking h(x) = log x. �

12. General Results about Hyperbolic Lines

Theorem 12.1. Let P1 = (0, y1, z1, w1), P2 = (x2, 0, z2, w2), and P3 = (x3, y3, 0, w3)
be three points on faces 1, 2, and 3 of the reference tetrahedron. Then the condi-
tion that there is a line through vertex A4 that meets all three of the lines AiPi,
i = 1, 2, 3 is

z1x2y3 = y1z2x3.

This line is called a spear line. The spear line meets face A1A2A3 at the point
(x3y1, y1y3, y3z1, 0). (This point is known as the spear trace.)

Proof. This result was found by computer but could easily be carried out by
hand. Formula 16 gives us the equation of the plane, E, through A4 and A3P3.
Any spear line must clearly lie in this plane. Formula 18 determines the point,
Q1, where line A1P1 meets plane E. Then A4Q1 must be the desired spear line.
Similarly, we can find the point Q2, where line A2P2 meets plane E. Then A4Q2

must also be the desired spear line. Thus the condition is that points A4, Q1, and
Q2 colline. Formula 3 gives us this condition. Upon simplifying the result, the
computer came up with z1x2y3 = y1z2x3 as the algebraic condition. We can then
find the intersection of the common line A4Q1Q2 and the plane A1A2A3 to get
the coordinates of the spear trace. �



Stanley Rabinowitz 29

Geometric interpretation.
Let P1, P2, and P3 be points on the faces opposite vertices A1, A2, and A3,
respectively, of tetrahedron A1A2A3A4. Then there is a line through A4 that
meets lines A1P1, A2P2 and A3P3 if and only if

[P1A2A4][P2A3A4][P3A1A4] = [P1A3A4][P2A1A4][P3A2A4]

where [XY Z] denotes the area of triangle XY Z.

Figure 4a shows a top view of tetrahedron A1A2A3A4. Figure 4b then shows a
point taken on faces 1, 2, and 3. The condition is that the product of the areas
of the yellow triangles equals the product of the areas of the green triangles.

Figure 4. There is a line through A4 that meets AiPi, i = 1, 2, 3
if and only if product of yellow areas equals product of green areas.

We say that a center function F (a, b, c) = af(a, b, c) is a hyperbolic center function
if the cevians from the vertices of a tetrahedron to these centers on the opposite
faces form a hyperbolic group.

Proposition 12.2 ([2, p. 11]). If four given mutually skew lines passing through
the four vertices of a tetrahedron are such that through each vertex it is possible
to draw a spear line meeting the three lines passing through the remaining three
vertices, then the four given lines form a hyperbolic group.

Corollary 12.3 (Hyperbolic Condition). The condition that F (a, b, c) = af(a, b, c)
be a hyperbolic center function is:

F (b2, a1, b3)F (b3, b1, a2)F (b1, a3, b2) = F (b3, b2, a1)F (b1, a2, b3)F (b2, b1, a3).

This follows from the coordinates for the corresponding center on each face found
in section 2 and the preceding Proposition. Note that symmetry conditions imply
that we need only find the condition that one spear line exists (instead of all 4).

Corollary 12.4. In an isosceles tetrahedron, all center functions are hyperbolic.

Proof. When bi = ai, the hyperbolic condition becomes

F (a2, a1, a3)F (a3, a1, a2)F (a1, a3, a2) = F (a3, a2, a1)F (a1, a2, a3)F (a2, a1, a3)
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which is clearly an identity since a center function F (a, b, c) is symmetric in b and
c. �

Theorem 12.5. If F (a, b, c) is a hyperbolic center function, then so is arF (a, b, c)q.

Proof. The hyperbolic condition becomes

br2F (b2, a1, b3)
qbr3F (b3, b1, a2)

qbr1F (b1, a3, b2)
q

= br3F (b3, b2, a1)
qbr1F (b1, a2, b3)

qbr2F (b2, b1, a3)
q

which is an immediate consequence of the original condition. �

Theorem 12.6. If cevians to corresponding centers on each face of a tetrahedron
form a hyperbolic group, then so do cevians to the isotomic conjugates of those
centers.

Proof. Since in areal coordinates, the isotomic conjugate of a center (x, y, z) is
(1/x, 1/y, 1/z), the hyperbolic condition becomes

1

F (b2, a1, b3)

1

F (b3, b1, a2)

1

F (b1, a3, b2)
=

1

F (b3, b2, a1)

1

F (b1, a2, b3)

1

F (b2, b1, a3)

which is equivalent to the original condition. �

Corollary 12.7 ([2, p. 332]). If cevians to corresponding centers on each face of a
tetrahedron form a hyperbolic group, then so do cevians to the isogonal conjugates
of those centers.

Proof. This is because in areal coordinates, the isogonal conjugate of a center
(x, y, z) is (a−2/x, b−2/y, c−2/z). Thus the result follows from the previous two
theorems. �

Theorem 12.8. Suppose the edges of a tetrahedron satisfy the condition h(ai) +
h(bi) = t, i = 1, 2, 3, for some function h(x) and some constant, t. Then the ce-
vians to the face centers with center function [h(b)+h(c)−h(a)]q form a hyperbolic
group.

Proof. The hyperbolic condition becomes

[h(a1) + h(b3)− h(b2)]
q[h(b1) + h(a2)− h(b3)][h(a3) + h(b2)− h(b1)]

q =

[h(b2) + h(a1)− h(b3)]
q[h(a2) + h(b3)− h(b1)][h(b1) + h(a3)− h(b2)]

q

which immediately follows from

[h(a1) +h(b3) +h(a2)− t]q[h(b1) +h(a2) +h(a3)− t]q[h(a3) +h(b2) +h(a1)− t]q =

[h(b2) + h(a1) + h(a3)− t]q[h(a2) + h(b3) + h(a1)− t]q[h(b1) + h(a3) + h(a2)− t]q

which is identically true. �

Corollary 12.9. In a circumscriptible tetrahedron, the cevians to the face centers
with center function ar(b+ c− a) form a hyperbolic group. This includes the Ger-
gonne point, the Nagel point, the Mittenpunkt, the X41 point, and their isogonal
and isotomic conjugates.

Corollary 12.10. In an orthocentric tetrahedron, the cevians to the face centers
with center function ar(b2 + c2 − a2) form a hyperbolic group. This includes the
orthocenter, circumcenter, the crucial point, the X25 point, the X48 point, and
their isogonal and isotomic conjugates.
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Corollary 12.11. In a harmonic tetrahedron, the cevians to the face centers with
center function ar(1/b+1/c−1/a) form a hyperbolic group. This includes the X43
point, the X102 point, the X117 point, and their isogonal and isotomic conjugates.

Theorem 12.12. The power points are the only triangle centers with the property
that in any tetrahedron, the cevians to these face centers form a hyperbolic group.

Proof. Let F (a, b, c) = af(a, b, c) be a hyperbolic center function. Then F must
satisfy the functional equation

F (b2, a1, b3)F (b3, b1, a2)F (b1, a3, b2) = F (b3, b2, a1)F (b1, a2, b3)F (b2, b1, a3).

This equation must be true for all values of a1, a2, a3, b1, b2, and b3. Rewriting
this as

(6)
F (b2, a1, b3)

F (b3, b2, a1)
=
F (b1, a2, b3)

F (b3, b1, a2)
· F (b2, b1, a3)

F (b1, a3, b2)

shows that F (b2, a1, b3)/F (b3, b2, a1) is independent of a1, so we may define

(7) G(b2, b3) =
F (b2, a1, b3)

F (b3, b2, a1)
.

Substituting this in equation (6) yields

G(b2, b3) =
G(b1, b3)

G(b1, b2)

for all b1, b2, and b3. If we then let

H(z) = G(b1, z)

we find that

G(x, y) =
H(y)

H(x)

for all x and y. From the definition of G, (equation 7), we get

H(y)

H(x)
=
F (x, z, y)

F (y, x, z)

for all x, y, and z. Since F is homogeneous, this implies that

H(ty)

H(tx)
=
H(y)

H(x)

for all x, y, and t. Letting K(y) = H(y)/H(x) gives

K(ty)

K(y)
=
H(ty)

H(y)
=
H(tx)

H(x)
= K(tx).

Letting x = 1 shows that

K(ty) = K(t)K(y)

for all t and y, so by the Power Lemma we have K(x) = xr for some constant r.
Denoting H(1) by c, we have

H(x) = cK(x) = cxr.
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The coordinates for the center are

F (x, y, z) : F (y, z, x) : F (z, x, y) =
F (x, y, z)

F (x, y, z)
:
F (y, z, x)

F (x, y, z)
:
F (z, x, y)

F (x, y, z)

= 1 :
H(x)

H(y)
:
H(x)

H(z)

=
1

H(x)
:

1

H(y)
:

1

H(z)

= xr : yr : zr

and thus the center is a power point. �

Theorem 12.13. In an isodynamic tetrahedron, the center function arg(b, c) is
hyperbolic for any symmetric homogeneous function g.

Proof. The hyperbolic condition becomes

br2g(a1, b3)b
r
3g(b1, a2)b

r
1g(a3, b2) = br3g(b2, a1)b

r
1g(a2, b3)b

r
2g(b1, a3).

Since the tetrahedron is isodynamic, this is equivalent to

br2g(a1, t/a3)b
r
3g(t/a1, a2)b

r
1g(a3, t/a2) = br3g(t/a2, a1)b

r
1g(a2, t/a3)b

r
2g(t/a1, a3).

Using the fact that g is homogeneous, we see that this is equivalent to

br2g(a1a3, t)b
r
3g(t, a1a2)b

r
1g(a2a3, t) = br3g(t, a1a2)b

r
1g(a2a3, t)b

r
2g(t, a1a3)

which is easily seen to be an identity since g is symmetric. �

Corollary 12.14. In an isodynamic tetrahedron, the cevians to the face centers
with center function ar(bq + cq)±1 form a hyperbolic group. This includes the
Spieker center, the Brocard midpoint, the X37, X38, and X42 points, and their
isogonal and isotomic conjugates.

Conjecture 12.15. The center functions arg(b, c), where g is a symmetric ho-
mogeneous function, and r is arbitrary, are the only hyperbolic center functions
for an isodynamic tetrahedron.

13. General Planarity Results

Theorem 13.1. No triangle center has the property that in any isosceles tetra-
hedron, the corresponding face centers are coplanar.

Proof. The algebraic condition for planarity (found by computer) is one of

(8) F (a1, a2, a3) + F (a2, a3, a1) = F (a3, a1, a2)

(9) F (a2, a3, a1) + F (a3, a1, a2) = F (a1, a2, a3)

(10) F (a3, a1, a2) + F (a1, a2, a3) = F (a2, a3, a1)

(11) F (a1, a2, a3) + F (a2, a3, a1) + F (a3, a1, a2) = 0.

If condition (11) holds, then the center (α, β, γ) in areal coordinates would satisfy
α + β + γ = 0, a contradiction.

If condition (8) holds, then since it must be valid for all variables a1, a2, a3, we
see that conditions (9) and (10) would also hold. Adding these three equations
yields condition (11) which we have already seen yields a contradiction.
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The same contradiction is reached if we assume (9) or (10) holds. �

Corollary 13.2. No triangle center has the property that in any tetrahedron, the
corresponding face centers are coplanar.

The following condition was found by our computer program.

Theorem 13.3. The Feuerbach points on the faces of a tetrahedron are coplanar
if the edges of the tetrahedron satisfy the following condition:∣∣∣∣∣∣

a1 + b1 a2 + b2 a3 + b3
a1b1 a2b2 a3b3

1 1 1

∣∣∣∣∣∣ = 0.

In particular, the Feuerbach points are coplanar for circumscriptible, isodynamic,
and harmonic tetrahedra. The Feuerbach points would also be coplanar for tetra-
hedra that satisfy other simple relationships, for example, ones in which aibi+ai+bi
were constant.

14. General Results about Concurrent Normals

Theorem 14.1. Let P1 and P2 be any two points on faces 1 and 2 of tetrahedron
A1A2A3A4, respectively. If normals to the faces at P1 and P2 concur, then

(P2A3)
2 + (P1A4)

2 = (P2A4)
2 + (P1A3)

2.

Proof. From right triangles PP2A3, PP1A3, PP2A4, and PP1A4, we have

(A3P2)
2 + (PP2)

2 = (A3P )2 = (A3P1)
2 + (PP1)

2

and
(A4P2)

2 + (PP2)
2 = (A4P )2 = (A4P1)

2 + (PP1)
2.

Subtracting one equation from the other gives us the desired result. �

The converse is also true.

Theorem 14.2 (Tabov [14]). Let P1 and P2 be any two points on faces 1 and 2
of tetrahedron A1A2A3A4, respectively. If

(P2A3)
2 + (P1A4)

2 = (P2A4)
2 + (P1A3)

2,

then normals to the faces at P1 and P2 concur.

15. Miscellaneous Conjectures

The following conjectures are backed up by the data, but I don’t have formal
proofs.

Conjecture 15.1. If the central tetrahedron is isosceles, then the reference tetra-
hedron is isosceles.

Conjecture 15.2. If the central tetrahedron is regular, then the reference tetra-
hedron is regular.

Conjecture 15.3. If the central tetrahedron is similar to the reference tetrahe-
dron, then the center must be the centroid.

Conjecture 15.4. If the cevians to the corresponding face centers have the same
length, then the tetrahedron is isosceles.
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Appendix A. Center Functions and Trilinear Coordinates

In this appendix, we give the basic information about center functions and trilinear
coordinates that the reader needs to know.

Before giving the definition of a triangle center, let us review the concept of
trilinear coordinates. If ABC is a fixed reference triangle in the plane (with sides
of lengths a, b, and c), and if P is an arbitrary point in the plane, then the trilinear
coordinates of P are (α, β, γ) where α, β, γ are the signed distances from P to
the sides BC, CA, AB, respectively. The three coordinates satisfy the condition

(12) aα + bβ + cγ = 2K

where K is the area of 4ABC. If α, β, and γ are any three real numbers (with
aα + bβ + cγ 6= 0), then there is a unique point P in the plane whose trilinear
coordinates are proportional to α : β : γ. Thus (α, β, γ) may be considered to be
the trilinear coordinates of P even if condition (12) is not satisfied. If condition
(1) is satisfied, then we refer to the coordinates as exact trilinear coordinates.

A center function is a nonzero function f(a, b, c) that is homogeneous in a, b, and
c and symmetric in b and c. In other words, a center function must satisfy the
following two conditions for all a, b, c, t, and some integer r:

(C1) f(ta, tb, tc) = trf(a, b, c)

(C2) f(a, c, b) = f(a, b, c)

A center is an ordered triple α : β : γ given by

α = f(a, b, c), β = f(b, c, a), γ = f(c, a, b)

for some center function f(a, b, c). See [10] for more details. If f is a polynomial,
then the center is called a polynomial center.

If P = (α, β, γ), then the point (α−1, β−1, γ−1) is denoted by P−1 and is called
the isogonal conjugate of P . For the geometric meaning of isogonal conjugates,
consult [1].

More information about center functions and trilinear coordinates can be found
in [10], [11], and [12].

Appendix B. Areal Coordinates

In this appendix, we give the basic information about areal coordinates that the
reader needs to know.

Let ABC be a fixed reference triangle in the plane. If P is an arbitrary point in
the plane of 4ABC, then the areal coordinates of P are given by (x, y, z) where

x = [PBC]/[ABC],

y = [PCA]/[ABC],

z = [PAB]/[ABC].

The three areal coordinates satisfy the condition

(13) x+ y + z = 1.

Areal coordinates are also known as barycentric coordinates.
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If x, y, and z are any three real numbers (with x + y + z 6= 0), then there is a
unique point P in the plane whose areal coordinates are proportional to x : y : z.
Thus (x, y, z) may be considered to be the areal coordinates of P even if condition
(13) is not satisfied. The three coordinates are proportional to the areas formed
by P and the sides of the reference triangle ABC. If condition (13) is satisfied,
then we refer to the coordinates as exact areal coordinates.

Areal coordinates, (x, y, z), can be transformed to trilinear coordinates, (α, β, γ),
and vice versa, by the following formulas:

α = x/a, β = y/b, γ = z/c

where a, b, and c are the lengths of the sides of the reference triangle.

If P = (x, y, z), then the point (x−1, y−1, z−1) is denoted by PT and is called
the isotomic conjugate of P . For the geometric meaning of isotomic conjugates,
consult [1]. In terms of trilinear coordinates, the isotomic conjugate of (α, β, γ) is
(α−1/a2, β−1/b2, γ−1/c2).

More information about areal coordinates can be found in [3] and [9].

Appendix C. Tetrahedral Coordinates

In this appendix, we give the basic information about tetrahedral coordinates that
the reader needs to know.

The 3-dimensional analog of areal coordinates are tetrahedral coordinates. Let
[T ] denote the volume of a tetrahedron T . Let A1A2A3A4 be a fixed reference
tetrahedron in space with edges of lengths A2A3 = a1, A3A1 = a2, A1A2 = a3,
A1A4 = b1, A2A4 = b2, and A3A4 = b3, so that the edges of lengths ai and bi are
opposite each other, i = 1, 2, 3.

If P is an arbitrary point in space, then the tetrahedral coordinates of P are given
by (x1, x2, x3, x4) where

x1 = [PA2A3A4]/V,

x2 = [PA1A3A4]/V,

x3 = [PA1A2A4]/V,

x4 = [PA2A3A4]/V,

where V = [A1A2A3A4] is the volume of the reference tetrahedron. The four
tetrahedral coordinates satisfy the condition

(14) x1 + x2 + x3 + x4 = 1.

If xi, i = 1, 2, 3, 4 are any four real numbers (with nonzero sum), then there
is a unique point P in space whose tetrahedral coordinates are proportional to
x1 : x2 : x3 : x4. Thus (x1, x2, x3, x4) may be considered to be the tetrahedral
coordinates of P even if condition (14) is not satisfied. The four coordinates are
proportional to the volumes formed by P and the faces of the reference tetrahedron
ABCD. If condition (14) is satisfied, then we refer to the coordinates as exact
tetrahedral coordinates.

For more information about tetrahedral coordinates, see [4] and [7].
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Appendix D. Formulas

In this appendix, we collect together formulas about tetrahedral coordinates that
are needed in this paper. All points are given using exact tetrahedral coordinates.

POINTS

Formula 1: Coordinates of a point ([7, p. 65]):

(x, y, z, w)

where x + y + z + w = 1. The coordinates are proportional to the volumes
of the tetrahedra formed by the point and the faces of the reference tetrahe-
dron. If a more symmetric notation is needed, we will use the alternate form
(X1, X2, X3, X4).

Formula 2: Condition for 4 points (xi, yi, zi, wi), i = 1, 2, 3, 4 to be coplanar:∣∣∣∣∣∣∣∣
x1 y1 z1 w1

x2 y2 z2 w2

x3 y3 z3 w3

x4 y4 z4 w4

∣∣∣∣∣∣∣∣ = 0

or equivalently, ∣∣∣∣∣∣
x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1
x4 − x1 y4 − y1 z4 − z1

∣∣∣∣∣∣ = 0.

Formula 3: Condition for 3 points (xi, yi, zi, wi), i = 1, 2, 3 to be collinear:

x2 − x1
x3 − x1

=
y2 − y1
y3 − y1

=
z2 − z1
z3 − z1

=
w2 − w1

w3 − w1

.

Formula 4: Square of distance between points (x1, y1, z1, w1) and (x2, y2, z2, w2)
([7, p. 66]):

(y1 − y2)(z2 − z1)a21 + (z1 − z2)(x2 − x1)a22 + (x1 − x2)(y2 − y1)a23+

(x1 − x2)(w2 − w1)b
2
1 + (y1 − y2)(w2 − w1)b

2
2 + (z1 − z2)(w2 − w1)b

2
3.

This can be written in the symmetrical form:

−
∑
i,j

d2i,j(Xi −X ′i)(Xj −X ′j)

representing the square of the distance from (X1, X2, X3, X4) to (X ′1, X
′
2, X

′
3, X

′
4).

In this symmetrical notation, the summation symbol∑
i,j

means
4∑

i,j=1
i<j

and di,j represents the length of edge AiAj, so that

d2,3 = a1, d1,3 = a2, d1,2 = a3, d1,4 = b1, d2,4 = b2, d3,4 = b3.
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LINES

Formula 5: General equation of a straight line ([7, p. 67]):

x− x0
K

=
y − y0
L

=
z − z0
M

=
w − w0

N

where K + L + M + N = 0. The line passes through the point (x0, y0, z0, w0).
The quadruple, (K,L,M,N), represents the direction of the line and is called
the direction vector. Two lines are parallel if and only if they have the same
direction vector (or a multiple thereof). Note that some of K,L,M,N may be
0 because the condition (x − x0)/K = (y − y0)/L is really an abbreviation for
(x− x0)L = (y − y0)K which does not involve any possible divisions by 0.

Formula 6: Parametric equation of a straight line:

(x0 +Kt, y0 + Lt, z0 +Mt,w0 +Nt).

This formula yields all the points on the line through (x0, y0, z0, w0) with direction
vector (K,L,M,N) as t varies through the real numbers.

Formula 7: Equation of line through (x1, y1, z1, w1) and (x2, y2, z2, w2):

x− x1
x2 − x1

=
y − y1
y2 − y1

=
z − z1
z2 − z1

=
w − w1

w2 − w1

.

Formula 8: Coordinates of point that divides the line joining points (x1, y1, z1, w1)
and (x2, y2, z2, w2) in the ratio µ : λ ([7, p. 65]):

(
λx1 + µx2
λ+ µ

,
λy1 + µy2
λ+ µ

,
λz1 + µz2
λ+ µ

,
λw1 + µw2

λ+ µ
).

Formula 9: Condition for two lines (x − xi)/Ki = (y − yi)/Li = (z − zi)/Mi =
(w − wi)/Ni, i = 1, 2 to be parallel:

K1 : L1 : M1 : N1 = K2 : L2 : M2 : N2

or equivalently
K1

K2

=
L1

L2

=
M1

M2

=
N1

N2

.

Formula 10: Condition for two lines (x − xi)/Ki = (y − yi)/Li = (z − zi)/Mi =
(w − wi)/Ni, i = 1, 2 to be perpendicular ([7, p. 68]):

a21(L1M2 + L2M1) + a22(K1M2 +K2M1) + a23(K1L2 +K2L1)+

b21(K1N2 +K2N1) + b22(L1N2 + L2N1) + b23(M1N2 +M2N1) = 0.

Formula 11: Condition for two lines (x − xi)/Ki = (y − yi)/Li = (z − zi)/Mi =
(w − wi)/Ni, i = 1, 2 to intersect (or be parallel):∣∣∣∣∣∣∣∣

x1 y1 z1 w1

K1 L1 M1 N1

x2 y2 z2 w2

K2 L2 M2 N2

∣∣∣∣∣∣∣∣ = 0

or equivalently ∣∣∣∣∣∣
x2 − x1 y2 − y1 z2 − z1
K1 L1 M1

K2 L2 M2

∣∣∣∣∣∣ = 0.
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Formula 12: Direction cosines of the line (x−x0)/K = (y−y0)/L = (z−z0)/M =
(w − w0)/N :

KF1

3V σ
,
LF2

3V σ
,
MF3

3V σ
,
NF4

3V σ
,

where V is the volume of the reference tetrahedron, Fi is the area of face i (the
face opposite vertex Ai), and σ is determined from

a21LM + a22MK + a23KL+ b21KN + b22LN + b23MN = −σ2.

The direction cosines are the cosines of the angles that the line makes with the
normals to the four faces of the reference tetrahedron. They are proportional to
the direction vector.

PLANES

Formula 13: General equation of a plane ([7, p. 69]):

Ax+By + Cz +Dw = 0

where not all coefficients are 0. The coefficients A, B, C, D, are proportional to
the directed distances from the plane to the vertices of the reference tetrahedron.

Formula 14: Equation of the plane through 3 points, (xi, yi, zi, wi), i = 1, 2, 3 ([7]):∣∣∣∣∣∣∣∣
x y z w
x1 y1 z1 w1

x2 y2 z2 w2

x3 y3 z3 w3

∣∣∣∣∣∣∣∣ = 0.

Formula 15: Condition for planes A1x+B1y + C1z +D1w = 0 and A2x+B2y +
C2z +D2w = 0 to be parallel ([7, p. 70]):

A1 −D1

A2 −D2

=
B1 −D1

B2 −D2

=
C1 −D1

C2 −D2

.

Formula 16: Equation of the plane through the point (x1, y1, z1, w1) and the line
(x− x2)/K = (y − y2)/L = (z − z2)/M = (w − w2)/N :∣∣∣∣∣∣∣∣

x y z w
x1 y1 z1 w1

x2 y2 z2 w2

K L M N

∣∣∣∣∣∣∣∣ = 0.

Formula 17: Equation of plane through the line (x−x1)/K1 = (y−y1)/L1 = (z−
z1)/M1 = (w−w1)/N1 and parallel to the line with direction vector (K2, L2,M2, N2):∣∣∣∣∣∣∣∣

x y z w
x1 y1 z1 w1

K1 L1 M1 N1

K2 L2 M2 N2

∣∣∣∣∣∣∣∣ = 0.

Formula 18: Point of intersection of the line (x − x1)/K = (y − y1)/L = (z −
z1)/M = (w − w1)/N and the plane Ax+By + Cz +Dw = 0:

(x1 − rK, y1 − rL, z1 − rM,w1 − rN)

where

r =
Ax1 +By1 + Cz1 +Dw1

AK +BL+ CM +DN
.
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Formula 19: Condition for the line (x − x1)/K = (y − y1)/L = (z − z1)/M =
(w − w1)/N to be parallel to the plane Ax+By + Cz +Dw = 0:

AK +BL+ CM +DN = 0.

Appendix E. Tetrahedron Centers

In this appendix, we collect together information about various “centers” asso-
ciated with a tetrahedron. We give the tetrahedral coordinates for the more
well-known such centers and explain why some of these centers were not included
in our study.

CENTROID

The centroid, G, of a tetrahedron ([2, p. 54]) is the center of gravity of unit masses
placed on the vertices. Thus it has barycentric coordinates of

G = (1, 1, 1, 1).

The exact tetrahedral coordinates are (1/4, 1/4, 1/4, 1/4). The centroid is also
the intersection of the medians of the tetrahedron (the lines from a vertex to the
centroid of the opposite face).

INCENTER

The incenter, I, of a tetrahedron ([2, p. 76]) is the center of the sphere inscribed in
the tetrahedron (touching each of the faces internally). If we let r be the inradius
of the tetrahedron, then the volume of IA2A3A4 is 1

3
rF1. Similarly for the other

three volumes formed by I and the faces of the tetrahedron. These four volumes
sum to V , the volume of the tetrahedron. Thus r = 3V/(F1 +F2 +F3 +F4). The
incenter is equidistant from each face of the tetrahedron. Thus, the tetrahedral
coordinates are

I = (F1, F2, F3, F4).

To convert to exact tetrahedral coordinates, each coordinate should be divided by
F , the surface area of the tetrahedron.

CIRCUMCENTER

The circumcenter, O, of a tetrahedron ([2, p. 56]) is the center of the circum-
scribed sphere. If (Ox, Oy, Oz, Ow) are the coordinates for the circumcenter of our
reference tetrahedron, and if R denotes the circumradius, then we can set up 4
equations in Ox, Oy, Oz, Ow, and R:

d(O,A1)
2 = R2

d(O,A2)
2 = R2

d(O,A3)
2 = R2

d(O,A4)
2 = R2

where d(P1, P2) denotes the distance between points P1 and P2. This distance
formula is given by formula 4. Upon subtracting equation 2 from equation 1,
equation 3 from equation 2, and equation 4 from equation 3, we get 3 linear
equations in Ox, Oy, Oz, and Ow. Combining these with Ox +Oy +Oz +Ow = 1
gives us 4 linear equations in 4 unknowns. These are straightforward to solve.
The value of Ox found is proportional to

Ox = a21b
2
1(b

2
2 + b23 − a21) + a22b

2
2(b

2
3 + a21 − b22) + a23b

2
3(a

2
1 + b22 − b23)− 2a21b

2
2b

2
3.
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The values of Oy, Oz, and Ow are similar and can be obtained from Ox by the
mappings given in display (5). Specifically,

Oy = a21b
2
1(a

2
2 + b23 − b21) + a22b

2
2(b

2
3 + b21 − a22) + a23b

2
3(b

2
1 + a22 − b23)− 2b21a

2
2b

2
3,

Oz = a21b
2
1(b

2
2 + a23 − b21) + a22b

2
2(a

2
3 + b21 − b22) + a23b

2
3(b

2
1 + b22 − a23)− 2b21b

2
2a

2
3,

Ow = a21b
2
1(a

2
2 + a23 − a21) + a22b

2
2(a

2
3 + a21 − a22) + a23b

2
3(a

2
1 + a22 − a23)− 2a21a

2
2a

2
3.

MONGE POINT

The Monge point, M , of a tetrahedron ([2, p. 76]) is the common intersection
point of the six planes through the midpoints of the edges of the tetrahedron and
perpendicular to the opposite edges. The Monge point is the symmetric of the
circumcenter with respect to the centroid ([2, p. 77]) and thus its coordinates can
be found from them:

M = 2G−O.

Definition 7.The three points G, O, and M lie on a straight line called the Euler
line of the tetrahedron ([2, p. 77]).

EULER POINT

The Euler point, E, corresponds to the nine-point center in the plane. It is
frequently called the twelve point center ([2, p. 289]) because it is the center of a
sphere that passes through 12 notable points in the tetrahedron. The Euler point
lies on the Euler line of the tetrahedron and divides the segment MO in the ratio
1 : 2 and it divides the segment GM in the ratio 1 : 2. Thus its coordinates can
be found from the coordinates of those points:

E = (2G+M)/3.

ORTHOCENTER

The altitudes of a tetrahedron do not normally intersect. They intersect if and
only if the tetrahedron is orthocentric and in that case, the intersection point (the
orthocenter) coincides with the Monge point of the tetrahedron ([2, p. 71]). We
do not include the orthocenter of a tetrahedron as a distinguished point in our
study since it is not present in all tetrahedra.

SYMMEDIAN POINT (Lemoine Point)

In a tetrahedron, the cevians to the symmedian points on the opposite faces do
not normally intersect. They intersect if and only if the tetrahedron is isody-
namic ([2, p. 315]). The point of intersection is called the symmedian point of
the tetrahedron. We do not include the symmedian point of a tetrahedron as a
distinguished point in our study since it is not present in all tetrahedra.

GERGONNE POINT

In a tetrahedron, the cevians to the Gergonne points on the opposite faces do
not normally intersect. They intersect if and only if the tetrahedron is circum-
scriptible ([2, p. 299]). The point of intersection is called the Gergonne point of
the tetrahedron. We do not include the Gergonne point of a tetrahedron as a
distinguished point in our study since it is not present in all tetrahedra.

NAGEL POINT

In a tetrahedron, the cevians to the Nagel points on the opposite faces do not
normally intersect. They intersect if and only if the tetrahedron is circumscriptible
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([2, p. 299]). The point of intersection is called the Nagel point of the tetrahedron.
We do not include the Nagel point of a tetrahedron as a distinguished point in
our study since it is not present in all tetrahedra.

FERMAT POINT

In a tetrahedron, the cevians to the points of tangency of the opposite faces
with the insphere do not normally intersect. If they intersect, the tetrahedron is
called an isogonic tetrahedron ([2, p. 328]). The point of intersection is called the
Fermat point of the tetrahedron. In this case, the insphere touches the faces at the
Fermat point of each face. We do not include the Fermat point of a tetrahedron
as a distinguished point in our study since it is not present in all tetrahedra.
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