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Abstract. A cevian is a line segment joining the vertex of a triangle and a
point on the opposite side. Well-known cevians are medians, angle bisectors, and
altitudes. We consider various cevians passing through named triangle centers
such as the Gergonne point and Nagel point. We show how a computer can be
used to discover, not just prove, identities involving the squares of the lengths of
these cevians.
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1. Introduction

Let ma denote the length of the median to side a of a triangle with sides of lengths
a, b, and c. Similar notation is used for the other two medians. The identity

(1) 4(m2
a +m2

b +m2
c) = 3(a2 + b2 + c2)

is well known [1, p. 70]. It is the purpose of this paper to show how similar
relationships involving the sum of the squares of the lengths of other cevians can
be discovered, not just proven, by computer. We will find a number of such
relationships, believed to be new.

A cevian is a line segment joining the vertex of a triangle and a point on the op-
posite side. Let r, R, and s denote the inradius, circumradius, and semiperimeter
of the triangle. We use the notation∑

f(a, b, c)

to denote the cyclic sum f(a, b, c) + f(b, c, a) + f(c, a, b). Thus, equation (1) can
be written as

4
∑

m2
a = 3

∑
a2.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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A cevian through the Gergonne point of a triangle is called a Gergonne cevian
and a cevian through the Nagel point of a triangle is called a Nagel cevian. The
lengths of the Gergonne and Nagel cevians to side a of a triangle will be called
ga and na, respectively. The corresponding lengths to sides b and c are named
similarly.

Let Xn denote the n-th named triangle center in the Encyclopedia of Triangle
Centers [3]. A cevian through Xn shall be called an Xn-cevian. The line segment
from a vertex to the point Xn shall be called an Xn-spoke. In this paper, we will
look for linear relationships between the squares of cevians and spokes associated
with triangle centers.

2. The Results

The following results are believed to be new.

Theorem 1. The following identities hold for all triangles.

∑
g2a +

∑
n2
a + 2s2 = 4

∑
m2

a

3
∑

g2a + 3
∑

n2
a + 3

∑
bc = 10

∑
m2

a

3
∑

g2a + 3
∑

n2
a + 6r2 + 24R2 = 8

∑
m2

a

For the following theorems, we need some additional notation. Let d(P,Q) denote
the distance between points P and Q. In a fixed triangle ABC, let yn(a) =
d(A,Xn). That is, yn(a) is the length of the spoke from A to Xn. For brevity, we
will omit the “(a)” and just write yn = yn(a).

Theorem 2. The following identities hold for all triangles.

3
∑

y22 +
∑

y28 = 4
∑

y21

4
∑

y21 + 3
∑

y22 = 4
∑

y210∑
y28 + 4

∑
y210 = 5

∑
y21

15
∑

y21 +
∑

y28 = 16
∑

y210

3
∑

y22 +
∑

y24 = 4
∑

y23

3
∑

y22 +
∑

y23 = 4
∑

y25

15
∑

y22 +
∑

y24 = 16
∑

y25∑
y24 + 4

∑
y25 = 5

∑
y23

3
∑

y22 +
∑

y27 = 4
∑

y29
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Theorem 3. The following identities hold for all triangles.

4
∑

y21 +
∑

y24 = 4
∑

y23 +
∑

y28

4
∑

y31 +
∑

y23 = 4
∑

y210 +
∑

y24

4
∑

y21 +
∑

y23 = 4
∑

y25 +
∑

y28

4
∑

y25 +
∑

y21 = 4
∑

y210 +
∑

y23

4
∑

y21 +
∑

y27 = 4
∑

y29 +
∑

y28

4
∑

y29 +
∑

y21 = 4
∑

y210 +
∑

y27

4
∑

y23 +
∑

y27 = 4
∑

y29 +
∑

y24

4
∑

y26 +
∑

y27 = 4
∑

y29 +
∑

y23

5
∑

y21 + 16
∑

y25 = 20
∑

y210 +
∑

y24

5
∑

y23 + 16
∑

y210 = 20
∑

y25 +
∑

y28

5
∑

y27 + 16
∑

y210 = 20
∑

y29 +
∑

y28

There are also some relationships not involving symmetric sums.

Theorem 4. The following identities hold for all triangles.

9y22 + y24 = 8y25 + 2y23

9y22 + y28 = 8y210 + 2y21

3. The Proofs

The proofs of these results are straightforward using trilinear coordinates. Set
up a trilinear coordinate system with 4ABC as the reference triangle, so that
A = (1, 0, 0), B = (0, 1, 0), and C = (0, 0, 1). Let P be an arbitrary point in the
plane other than A and let AP meet BC at D. Then D = (0, q, r).

Figure 1. Trilinear Coordinates
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Theorem 5 (Cevian and Spoke Lengths). Let P be a point in the plane of 4ABC
with trilinear coordinates (p, q, r). Then

AD =

√
b2r(q + r) + c2q(q + r)− a2qr

q + r

and

AP =

√
b2r(q + r) + c2q(q + r)− a2qr

p+ q + r
.

Proof. These results follow from the formula for the distance between two points
in trilinear coordinates [2, formula 9]. �

The trilinear coordinates for the various triangle centers can be found in [3]. These
can be expressed in terms of a, b, and c, the lengths of the sides of the reference
triangle. The values of r, R, and s are also well known [1]:

r = K/s

R = abc/(4K)

s = (a+ b+ c)/2

where

K =
√
s(s− a)(s− b)(s− c).

Using these values and Theorem 5, Theorems 1–4 can be proven by substituting
these values in for yi, r, R, and s and verifying that the resulting formula is true
using algebraic simplification.

4. A Geometric Proof

Some of the results can also be proven geometrically.

Lemma 6 ([4]). Let A, B, C, and D be four collinear points such that

AB : BC : CD = 3 : 1 : 2.

Let P be a point in the plane and let PA = a, PB = b, PC = c, and PD = d.
Then

a2 + 9c2 = 8b2 + 2d2.
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Proof. By Stewart’s Theorem [1, p. 152], we have

a2(k) + c2(3k) = b2(4k) + (3k)(k)(4k)

and

b2(2k) + d2(k) = c2(3k) + (k)(2k)(3k).

Eliminating k from these two equations gives the desired result. �

Lemma 7. Let Xn denote the n-th named triangle center in the Encyclopedia of
Triangle Centers [3]. Then X3, X2, X5, and X4 colline and X1, X2, X10, and X8

colline. Furthermore,

X3X2 : X2X5 : X5X4 = 2 : 1 : 3

and

X1X2 : X2X10 : X10X8 = 2 : 1 : 3.

Figure 2. Collinear Centers

Proof. These are well-known properties of a triangle’s Euler line [5] and its Nagel
line [6]. �

Theorem 4 now follows from Lemma 6 and Lemma 7.

5. The Discovery Process

Once an identity involving the lengths of cevians is known, the proof is relatively
simple using trilinear coordinates. The interesting issue is how to discover such
results.

Suppose we want to look for a linear relationship between some or all of the {yi},
i = 1, 2, ..., 10.

The program Mathematica has a function called FindIntegerNullVector that
finds linear relationships between a set of numbers. According to [7], it uses
Storjohann’s variant of the Lenstra–Lenstra–Lovasz lattice reduction algorithm
and is reasonably efficient. Unfortunately, yi is an expression in terms of a, b,
and c. The function FindIntegerNullVector will not work with non-constant
expressions.
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We can use the following technique. Substitute numerical values for a, b, and c in
the expressions and then use FindIntegerNullVector to find a linear relationship
between the numerical values. If the values chosen are random enough, the linear
relationship will also hold for the expressions. In particular, if we choose

a = π, b = e, and c =
3
√

11,

where e is the base of natural logarithms, then it is extremely unlikely that there
is a simple polynomial relationship between a, b, and c. We choose these three
values because they satisfy the triangle inequality.

In Mathematica, we let y[i] be the square of the length of yi, and issue the
following commands.

vector = Table[y[i], {i, 1, 10}];

FindIntegerNullVector[vector/.{a->Pi, b->E, c->11^(1/3)}]

Mathematica responds with

{−2, 0, 2,−1, 8, 0, 0, 1, 0,−8}
which tells us that it has found the linear relationship

−2y21 + 2y23 − y24 + 8y25 + y28 − 8y210 = 0.

We have thus discovered a new result.

Theorem 8. The following identity holds for all triangles.

2y23 + 8y25 + y28 = 2y21 + y24 + 8y210

The result is easily proven using the expressions for the yi and a little algebra. It
can also be derived by eliminating y2 from the two equations in Theorem 4.

The results of Theorems 1–4 were discovered using the same technique. Since
FindIntegerNullVector returns only the first linear relationship it finds, in some
cases we simplified the discovery process by applying FindIntegerNullVector to
all 3- or 4-element subsets of the {yi}, i = 1, 2, ..., 10.

Additional terms can be added to the vector. For example, if we remove y1 and
y3 from the vector and add the expression a2 to the end of the vector, when we
call FindIntegerNullVector, Mathematica responds with

{−18,−1, 16, 0, 0, 0, 0, 0, 1}
giving us the following interesting result.

Theorem 9. The following identity holds for all triangles.

18y22 + y24 = 16y25 + a2

Many more interesting identities can be found using this technique. One final
example involving symmetric sums:

Theorem 10. The following identity holds for all triangles.

2
∑

y28 + 5s2 = 12
∑

y210 + 15r2
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