International Journal of Computer Discovered Mathematics (IJCDM) ISSN 2367-7775 ©IJCDM Volume 6, 2021, pp.84-86 Received 27 April 2021. Published on-line 20 June 2021 web: http://www.journal-1.eu/ ©The Author(s) This article is published with open access¹.

Median-orthologic Simplexes

THANH TUNG VU² 250 Quang Trung, Namdinh city, Vietnam e-mail: tungvtt@gmail.com

Abstract.We generalize the notation of *median-orthologic* triangles in two-dimensional Euclidean geometry to higher dimension.

Keywords. Median, Orthologic, Simplexes, Euclidean geometry.

Mathematics Subject Classification (2010). 51-04, 68T01, 68T99.

The *median-orthology* relationship between two triangles in two-dimensional geometry was proposed in [1]. This triangle relationship was discovered when the author played with the computer software "GeoGebra".

Two triangles are called *median-orthologic* if three lines, respectively drawn from the vertices of the first triangle and perpendicular to the corresponding medians of the second triangle, are concurrent. In this case, reciprocally, three lines, respectively drawn from the vertices of the second triangle and perpendicular to the corresponding medians of the first triangle, are also concurrent. Two concurrent points are then called the *median-orthologic* centers. See figure for an illustration.

In this paper, we generalize this concept to higher dimension. Let $n \geq 2$ be a integer and consider two n-dimensional non-degenerate simplexes $\mathbf{A} = A_1 A_2 \dots A_{n+1}$ and $\mathbf{B} = B_1 B_2 \dots B_{n+1}$ in the *n*-dimensional Euclidean space \mathcal{E}^n . Let G_a, G_b be respectively the centroids of \mathbf{A} and \mathbf{B} .

Let a_i , (i = 1, 2, ..., n + 1), be the *n*-dimensional hyperplanes respectively containing the vertices A_i of simplex **A** and perpendicular to the median line B_iG_b of simplex **B**. Similarly, let b_i , (i = 1, 2, ..., n + 1), be the *n*-dimensional hyperplanes respectively containing the vertex B_i of simplex **B** and perpendicular to the median line A_iG_a of simplex **A**.

Theorem. The following statements are equivalent:

- (1) $a_1, a_2, ..., a_{n+1}$ intersect at a single point.
- (2) $b_1, b_2, ..., b_{n+1}$ intersect at a single point.

¹This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

²Corresponding author

FIGURE 1. Example of a pair of *median-orthologic* triangles $\triangle A_1 A_2 A_3$, $\triangle B_1 B_2 B_3$ with centroids G_a, G_b . The lines a_1, a_2, a_3 passing through A_1, A_2, A_3 respectively perpendicular to $G_b B_1, G_b B_2, G_b B_3$ are concurrent. The lines b_1, b_2, b_3 passing through B_1, B_2, B_3 respectively perpendicular to $G_a A_1, G_a A_2, G_a A_3$ are also concurrent.

(3) $\sum_{1 \le i,j \le n+1} \overrightarrow{A_i A_j} \cdot \overrightarrow{B_i B_j} = 0.$

Here " \cdot " stands for the dot-product.

Definition. Two simplexes satisfying these statements in Theorem as two medianorthologic simplexes. This relation between two simplexes is called median-orthology. Two concurrent points are called median-orthologic centers.

To prove the Theorem , we will take the same steps as in [1]. We need the following key Lemma.

Lemma. Let M be an arbitrary point on \mathcal{E}^n . Then we have the following identities, called here the dot-product identity:

$$\sum_{1 \le i \le n+1} \overrightarrow{MA_i} \cdot \overrightarrow{G_bB_i} = \sum_{1 \le i \le n+1} \overrightarrow{MB_i} \cdot \overrightarrow{G_aA_i} = \frac{1}{2(n+1)} \sum_{1 \le i,j \le n+1} \overrightarrow{A_iA_j} \cdot \overrightarrow{B_iB_j}.$$

Proof. [of the Lemma]

As G_b is the centroid of the **B**, we have $\overrightarrow{G_bB_i} = \frac{1}{n+1} \sum_{1 \le j \le n+1} \overrightarrow{B_jB_i}$. Consequently,

$$\sum_{1 \le i \le n+1} \overline{MA'_i} \cdot \overline{G_bB'_i} = \frac{1}{n+1} \sum_{1 \le i \le n+1} \overline{MA'_i} \cdot \left(\sum_{1 \le j \le n+1} \overline{B_jB'_i}\right)$$
$$= \frac{1}{2(n+1)} \sum_{1 \le i,j \le n+1} \left(\overline{MA'_i} \cdot \overline{B_jB'_i} + \overline{MA'_j} \cdot \overline{B_iB'_j}\right)$$
$$= \frac{1}{2(n+1)} \sum_{1 \le i,j \le n+1} \overline{A_iA'_j} \cdot \overline{B_iB'_j}.$$

Proof. [of the Theorem]

We only need to prove $(1) \Leftrightarrow (3)$, as by the same argument $(2) \Leftrightarrow (3)$ and the conclusion follows.

Assume that (1) is true, i.e the n-dimensional hyperplanes b_i intersect at a point M. Since for each i, $MB_i \perp G_aA_i$ we have $\overrightarrow{MA_i} \cdot \overrightarrow{G_aA_i} = 0$. By the dot-product identity we obtain (3).

Now assume that (3) is true, i.e $\sum_{1 \le i,j \le n+1} \overrightarrow{A_i A_j} \cdot \overrightarrow{B_i B_j} = 0$. By the dot-product identity we have $\sum_{1 \le i \le n+1} \overrightarrow{MB_i} \cdot \overrightarrow{G_a A_i} = 0$. Since n+1 vertices A_i of \mathbf{A} do not lie on the same n-dimensional hyperplane, any two different n-dimensional hyperplanes among $b_1, b_2, ..., b_{n+1}$ are not parallel. Thus, $b_1, b_2, ..., b_n$ intersects at a single point M. For each $i \in \{1, 2, ..., n\}, \overrightarrow{MA_i} \cdot \overrightarrow{G_a A_i} = 0$ as $MB_i \perp G_a A_i$. By $\sum_{1 \le i \le n+1} \overrightarrow{MB_i} \cdot \overrightarrow{G_a A_i} = 0$ we obtain $\overrightarrow{MB_{n+1}} \cdot \overrightarrow{G_a A_{n+1}} = 0$ or $MB_{n+1} \perp G_a A_{n+1}$. Thus, $M \in b_{n+1}$ and we obtain (1).

References

 Vu, T.T. (2021). 105.11 Median-parallelogic and median-orthologic triangles. The Mathematical Gazette, 105(562), 136-139. doi:10.1017/mag.2021.24