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Abstract. We use barycentric coordinates as a tool both for proposing new
problems or solving them. Although barycentric coordinates are not always the
most beautiful way to solve a problem, they may be a powerful tool to arrive
quickly to a solution of the problem or to the creation of new ones.
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1. Introduction

We use the standard notation in triangle geometry. See Yiu [1]. Denote by
a = BC, b = CA and c = AB the sides of a triangle ABC. If we want to visualize
all triangles ABC such that f(a, b, c) = 0 for some function f , we may fix B and
C with cartesian coordinates B = (−a

2
, 0) and C = (a

2
, 0) and let A = (x, y) vary

on the plane meeting the conditions

(1) b2 = (x− a

2
)2 + y2, c2 = (x +

a

2
)2 + y2

In this way, if we eliminate b and c, we get an equation of a curve the form
ϕ(x, y, a) = 0 as the locus of A.
As an example, if we consider the triangles such that f(a, b, c) = b2 + c2−a2, then
we easily get ϕ(x, y, a) = x2 + y2 − a2

4
, and we arrive to the very well known fact

that the locus for A is the circle with BC as diameter.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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Figure 1

2. Some lines parallel to BC

In this section we look for triangles in which some particular lines are parallel to
BC.

Problem 2.1. Find all triangles ABC such that Euler line of ABC is parallel to
line BC.
Solution. The parallel to BC at G = (1 : 1 : 1), containing the infinite point of
BC, namely (0 : −1 : 1) is the line 2x = y + z. This line contains the orthocenter
H = (SBSC : SCSA : SASB) if and only if

2SBSC = SCSA + SASB = a2SA ⇔ a2(b2 + c2 − a2) = (c2 + a2 − b2)(a2 + b2 − c2).

Some further calculations using (1) lead to

12x2 + 4y2 = 3a2 ⇔ 4x2

a2
+

4y2

3a2
= 1⇔ x2(

a
2

)2 +
y2(√
a
2

)2 = 1.

This shows that the locus of A is an ellipse. The minor axis is the segment BC.
The endpoints of the major axis are the vertices of the two equilateral triangles
erected on the segment BC.

B C

A

GH

Figure 2

Problem 2.2. Find all triangles ABC such that the Brocard axis of ABC is
parallel to line BC.
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Solution. In this case, the line joining (0 : −1 : 1) and K = (a2 : b2 : c2)
has equation (b2 + c2)x = a2(y + z). This line goes through the circumcenter
O = (a2SA : b2SB : c2SC) if and only if (b2 + c2)a2SA = a2 (b2SB + c2SC), hence

(b2 + c2)2 − (b2 + c2)a2 =b2(c2 + a2 − b2) + c2(a2 + b2 − c2)

=(b2 + c2)a2 + b2(c2 − b2) + c2(b2 − c2)

=(b2 + c2)a2 − (b2 − c2)2,

and using (1) we get the equation

16y4 + (32x2 − 8a2)y2 + 16x4 − 8a2x2 − 3a4 = 0,

that using a = 2m is equivalent to

(2) y4 + (2x2 − 2m2)y2 + x4 − 2m2x2 − 3m4 = 0.

We can plot any of these curves. However, it is more interesting to find a ruler
and compass constructions of these triangles ABC. If we solve (2) for y we find

y2 = m2 − x2 ± 2m
√
m2 − x2 =

√
m2 − x2

(√
m2 − x2 ± 2m

)
.

This gives a simple construction for points A = (x, y) satisfying (2).

B CM X

P'

N

P

N'

Q

Z

A

Figure 3

Call M the midpoint of BC and take any X on BC, center of the circle (BC)
with BC as diameter. Let NN ′ the diameter of (BC) perpendicular to BC and
PP ′ the chord through X perpendicular to BC. Let Q be the intersection of XP
and the line through N parallel to N ′P . Let Z be one of the intersection points
of BC and the circle (P ′Q) with P ′Q as diameter. Let A any of the intersection
points of XP and the circle centered at X with XZ as radius. Then the triangle
ABC is a solution of our problem.
Figure 3 shows the locus of A, a closed symmetric curve respect to BC.
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3. Concurrences

Problem 3.1. Let Ya, Za be the contact points of the sides of the triangle ABC
and the A−excircle, and define Zb, Xb and Xc, Yc cyclically. The triangle formed
by the lines YaZa, ZbXb and XcYc is perspective with the medial triangle of ABC.

A

B CXc

Zb

Xb

Za

Ya

Yc

X

Y

Z

A'

B'C'

X
9

Figure 4

From CYa : YaA = −(s − b) : s and AZa : ZaB = s : −(s − c) we have Ya =
(s − b : 0 : −s) and Za = (s − c,−s, 0), and we can calculate the equation
of the line YaZa : sx + (s − c)y + (s − b)z = 0. Similarly we have the lines
ZbXb : (s− c)x+ sy + (s− a)z = 0 and XcYc : (s− b)x+ (s− a)y + sz = 0. These
lines intersect at X = (−a(b + c) : SC : SB). If A′B′C ′ is the medial triangle of
ABC, the line XA′ has equation (b− c)x+ a(y− z) = 0. In the same way we can
calculate the lines Y B′ : (c− a)y + b(z−x) = 0 and ZC ′ : (a− b)z + c(x− y) = 0.
The linesXA′, Y B′ and CZ ′ concur at the pointX9 = (a(s−a) : b(s−b) : c(s−c)),
known as the Mittenpunkt of ABC.

4. Problem Mathematical Reflections O333

This is problem O333 of magazine Mathematical Reflections:

Problem 4.1. Let ABC be a scalene acute triangle and denote by O, I, H its
circumcenter, incenter, and orthocenter, respectively.Prove that if the circumcircle
of triangle OIH passes through one of the vertices of triangle ABC then it also
passes through one other vertex.

Proposed by Josef Tkadlec, Charles University, Czech Republic
Solution. We consider an inversion with respect to the circumcircle. The circle
HIO inverts on the line X36X186 joining X36, the inverse of I and X186, the inverse
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of H. We calculate later that this line has equation

(b− c)(s− a)SA

cosA− 1
2

x +
(c− a)(s− b)SB

cosB − 1
2

y +
(a− b)(s− c)SC

cosC − 1
2

z = 0,

where we have used the usual notation

SA =
b2 + c2 − a2

2
, SB =

c2 + a2 − b2

2
, SC =

a2 + b2 − c2

2
, s =

a + b + c

2
.

The line X36X186 goes through A if and only if

(b− c)SA

(
cosB − 1

2

)(
cosC − 1

2

)
= 0.

Since ABC is a scalene acute triangle, we must haveB = 60◦ or C = 60◦. Suppose,
for example, that B = 60◦. Then working backwards, the circle HIO also goes
through C.
To complete the proof we calculate the barycentric coordinates of X36 and X180

and the equation of line X36X186.
Coordinates of X36. Let I ′ be the inverse of I with respect to the circumcircle.
From OI ·OI ′ = R2 and OI2 = R2 − 2Rr (Euler formula), we get

OI ′

I ′I
=

OI ′

OI −OI ′
=

OI ·OI ′

OI2 −OI ·OI ′
=

R2

OI2 −R2
= −R

2r
= −abc

4∆
:

2∆

s
= −abcs

2S2
,

where S = 2∆ is twice the area of the triangle ABC.
Now the points O = (a2SA : b2SB : c2SC) and I = (a : b : c) have sum of its
coordinates 2S2 and 2s respectively, therefore sO and s2I have equal sum (weight)
and we can get algebraically I ′ = 2S2(sO)− abcs(S2I) = S2s(2O − abcI). Hence
the first coordinate of I ′ is

a2(b2 + c2 − a2)− a2bc = a2(b2 + c2 − a2 − bc) = 2abc · a
(

cosA− 1

2

)
,

and the barycentric coordinates or X36 are

X36 = I ′ =

(
a

(
cosA− 1

2

)
: b

(
cosB − 1

2

)
: c

(
cosC − 1

2

))
.

Coordinates of X186. Let H ′ be the inverse of H. From OH · OH ′ = R2 and the
very well known formul OH2 = R2 − 8R2 cosA cosB cosC, we get

OH ′

H ′H
=

R2

OH2 −R2
=

R2

−8R2 cosA cosB cosC
=

−1

8 cosA cosB cosC
= − a2b2c2

8SASBSC

.

The sum of the coordinates of H = (SBSC : SCSA : SASB) is S2, therefore
H ′ = (8SASBSC)O − (a2b2c2)(2H). The first coordinate of H ′ is

8SASBSC · a2SA − a2b2c2 · 2SBSC = 2a2SBSC

(
4S2

A − b2c2
)

= 8a2b2c2SBSC

(
cosA +

1

2

)(
cosA− 1

2

)
,

and the barycentric coordinates of H ′ = X186 are

X186 =

(
cosA2 − 1

4

SA

:
cosB2 − 1

4

SB

:
cosC2 − 1

4

SC

)
.
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Equation of the line X36X186. The equation ofX36X186 has the form ux+vy+wz =
0, where the coefficient u is∣∣∣∣∣ b

(
cosB − 1

2

)
c
(
cosC − 1

2

)
cos2 B− 1

4

SB

cos2 C− 1
4

SC

∣∣∣∣∣ =

(
cosB − 1

2

) (
cosC − 1

2

)
SBSC

∣∣∣∣ bSB cSC

cosB + 1
2

cosC + 1
2

∣∣∣∣
=−

(
cosB − 1

2

) (
cosC − 1

2

)
s(s− a)(b− c)

SBSC

,

because∣∣∣∣ bSB cSC

cosB + 1
2

cosC + 1
2

∣∣∣∣ =

∣∣∣∣ bSB cSC
SB

ac
+ 1

2
SC

ab
+ 1

2

∣∣∣∣ =
1

abc

∣∣∣∣ bSB cSC

bSB + abc
2

SC + abc
2

∣∣∣∣
=

1

abc

∣∣∣∣ bSB cSC
abc
2

abc
2

∣∣∣∣ =
1

2

∣∣∣∣ bSB cSC

1 1

∣∣∣∣ =
1

2
(bSB − cSC)

=
1

4

(
b(a2 − b2 + c2)− c(a2 + b2 − c2)

)
=
−(b− c)(a + b + c)(b + c− a)

4
.

5. Right triangle at the incenter

Problem 5.1. Let ABC be a triangle and X the contact point of the C−excircle
and BC, and Y the intersection of CA and the line parallel to AX through B.
Then we have ∠Y IC = 90◦.

A

B C

I

Ic

X

Y

Figure 5

Since CY : Y A = CB : BX = a : s− a, we have Y = (a : 0 : s− a). The incenter
is I = (a : b : c), with sum of coordinates (weight) a + b + c = 2s. The infinite
point of line IY is (2a− a : −b : 2(s− a)− c) = (a : −b : b− a), the same as the
infinte point of the line bx + ay = 0, which is the external angle bisector of angle
C. Therefore IY e IC are perpendicular.

6. The same homothety center

Problem 6.1. Let ABC be a triangle and P,Q two points on line segment BC.
Let (PB), (PC), (QB) and (QC) be the incircles of the triangles ABP , APC, ABQ
and AQC. Then the external center of homothety of the circles (PB) and (QC) is
the same as the external center of homothety of the cricles PC y QB.
https://talentomatematico.files.wordpress.com/2014/01/geometria-moderna.pdf
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A

B CP Q

PB

QCQB

PC

K

Solution. We first use barycentric coordinates to prove some lemmas:

Lemma 6.1. If X lies on BC and BX : XC = t : 1− t, then the incenter XB of
triangle ABX has homogeneous barycentric coordinates

XB = (at : AX + (1− t)c : ct).

A

B CX

XB

XC

X'

Proof. If X ′ = AXB ∩ BC, we have X = (0 : 1 − t : t) and, by the bisector
theorem, BX ′ : X ′X = AB : AX = c : AX we getX ′ = (0 : AX + (1 − t)c : tc).
On the other side, since XB lies on the angle bisector BI : cx − az = 0, we find
the intersection point XB = (at : AX + (1− t)c : ct).
Symmetrically, the incenter XC of triangle AXC has homogeneous barycentric
coordinates XC = ((1− t)a : (1− t)b : bt + AX).

Lemma 6.2. If X lies on BC and BX : XC = t : 1 − t, then we have AX2 =
tb2 + (1− t)c2 − t(1− t)a2.
Proof. From Stewart theorem for cevian AX,

a ·
(
AX2 + BX ·XC

)
= b2 ·BX + c2 ·XC

⇒a ·
(
AX2 + ta · (1− t)a

)
= b2 · ta + c2 · (1− t)a

⇒AX2 = tb2 + (1− t)c2 − t(1− t)a2.

Lemma 6.3. If X lies on BC and BX : XC = t : 1− t, then

AX2 − (tb− (1− t)c)2 = (1− t)t(a + b + c)(b + c− a).
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Proof. We sum the corresponding sides of the identities

(tb− (1− t)c)2 = t2b2 + (1− t)2c2 − 2t(1− t)bc

(1− t)t(a + b + c)(b + c− a) = (1− t)t(b2 + c2 + 2bc− a2)

and we get
(tb− (1− t)c)2 + (1− t)t(a + b + c)(b + c− a)

=tb2 + (1− t)c2 − t(1− t)a2

=AP 2.

Lemma 6.4. Let ABC be a triangle and P = (u : v : w) a point, P ′ the feet of
the perpendicular to BC through P , and P ′′ the reflection of P ′ on P . Then P ′′

has coordinates
P ′′ = (2a2u : a2v − uSC : a2w − uSB).

A

B C

P

P'

P''

Proof. We calculate first the coordinates of P ′, by finding the line through P and
P and (−a2 : SC : SB), the infinite point of a perpendicular to BC, then finding
its intersection with line BC : x = 0. To do that, we calculate the determinant∣∣∣∣∣∣

0 y z
u v w
−a2 SC SB

∣∣∣∣∣∣ = 0⇒ (SBu + a2w)y = (SCu + a2v)z,

giving the point P ′ = (0 : SCu + a2v : SBu + a2w). The sum of coordinates of P ′
is a2(u + v + w), hence the coordinates of P ′′ follow from the algebraic relation

P ′′ = 2P − P ′ =2(a2u, a2v, a2w)− (0, SCu + a2v, SBu + a2w)

=(2a2u, a2v − SCu, a
2w − SBu).

Now to solve our problem we take P = (0 : 1−p : p) and Q = (0 : 1−q : q). Then
by Lemma 1, PB = (ap : AP+c(1−p) : cp) and QC = (a(1−q) : b(1−q) : AQ+bq).
If P ′B and Q′C are the orthogonal projections of P and P ′ on BC and P ′′B,Q′′C are
their reflection on PB, QC , respectively, obtenemos:

P ′′B =
(
2pa2 : aAP + (1− p)ac− pSC , 2p(s− a)(s− c)

)
,

Q′′C =
(
2(1− q)a2 : 2(1− q)(s− a)(s− b) : aAQ + qab− (1− q)SB

)
.

The line P ′′BQ
′′
C instersects BC at the point

KPQ = (0 : −(1− q)(AP − pb + (1− p)c) : p(AQ + qb− (1− q)c)).

Symmetrically, if we consider the points PC and QB we get the that the corre-
sponding line P ′′CQ

′′
B instersects BC at the point

KQP = (0 : −(1− p)(AQ− qb + (1− q)c) : q(AP + pb− (1− p)c)).
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Since points of the form (0 : m : n) and (0 : m′ : n′) are the same if and only if
mn′ = m′n, to prove KPQ = KQP we only need that

q(1− q)
(
AP 2 − (pb− (1− p)c)2

)
= p(1− p)

(
AQ2 − (qb− (1− q)c)2

)
,

and this follows inmmediatly from Lemma 4.
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