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1. Introduction

In accordance with Leversha [6] the internal center of similitude of the circumcircle
of the Kosnita and tangential triangles is a significant triangle point. We call this
point the Leversha point. Note that at present time the Leversha point is not
included in the Kimberling’s ETC [5], the 11188 points edition of 2016. In this
note we find the barycentric coordinates and new properties of the Leversha point.
Figures 1 and 2 illustrate the Leversha point. In figures 1 and 2, ABC is the
reference triangle, OaObOc is the Kosnita triangle, c1 is the circumcircle of the
Kosnita triangle, K is the circumcenter of the Kosnita triangle, TATBTC is the
tangential triangle, c2 is the circumcircle of the tangential triangle, T is the cir-
cumcenter of the tangential triangle, and P is the internal center of similitude of
circles c1 and c2.
We use barycentric coordinates. We refer the reader to [11], [1], [5], [2], [3], [4],
[7], [8], [9], [10].
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Figure 1.

Figure 2.

2. Kosnita Triangle

Here we calculate the barycentric coordinates of the Kosnita triangle. The reader
may find the definition of the Kosnita triangle e.g. in [6].

Theorem 2.1. The barycentric coordinates of the Kosnita triangle OaObOc are
as follows:

Oa = (a2(a4 + b4 + c4 − 2a2b2 − 2a2c2),

−b2(a4 + b4 − 2a2b2 − a2c2 − b2c2),

−c2(a4 + c4 − 2a2c2 − a2b2 − b2c2)).
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Ob = (a2(a4 + b4 − 2a2b2 − a2c2 − b2c2),

−b2(a4 + b4 + c4 − 2a2b2 − 2b2c2),

c2(b4 + c4 − 2b2c2 − a2b2 − a2c2)).

Oc = (a2(a4 + c4 − 2a2c2 − a2b2 − b2c2),

b2(b4 + c4 − 2b2c2 − a2b2 − a2c2),

−c2(a4 + b4 + c4 − 2a2c2 − 2b2c2)).

Proof. The Kosnita triangle OaObOc and the tangential triangle TaTbTc are ho-
mothetic with center of homothety the circuncenter of triangle ABC and ratio
2 (see e.g Laversha [6], Theorem 12.14). Hence, we can calculate the vertices
Oa,Ob and Oc as midpoints of segments OTa,OTb and OTc, by using the mid-
point formula (14), [2]. The barycentric coordinate of the Circumcenter O and the
Tangential triangle TaTbTc are given in [11], pages 26 and 54, respectively. An-
other way is we to use the formula for homothety (17), [2], or to use the definition
of the Kosnita triangle. �

3. Leversha Point

Theorem 3.1. The barycentric coordinates of the Leversha Point P = (uP, bP, cP )
are as follows:

uP = a2(3a8 − 6a6b2 − 6a6c2 + 4b2c2a4 − 2a2b2c4 − 2a2b4c2 + 6a2b6 + 6a2c6

−3c8 − 2b4c4 − 3b8 + 4b6c2 + 4b2c6),

vP = b2(3b8 − 6b6c2 − 6a2b6 + 4a2b4c2 − 2b2c2a4 − 2a2b2c4 + 6b2c6 + 6a6b2

−3a8 − 2c4a4 − 3c8 + 4a2c6 + 4a6c2),

wP = c2(3c8 − 6a2c6 − 6b2c6 + 4a2b2c4 − 2a2b4c2 − 2b2c2a4 + 6a6c2 + 6b6c2

−3b8 − 2a4b4 − 3a8 + 4a6b2 + 4a2b6).

Proof. We use use the definition of the Leversha point and the barycentric coor-
dinates of Kosnita triangle, given in Theorem 2.1. �

The text two theorems and give alternative ways for finding the barycentric coor-
dinates of the Leversha point. In order to find the barycentric coordinates of the
Leversha point, we have to use the homothety formula (17), [2] in Theorem 3.2
and the internal division formula (12), [2] in Theorem 3.3.

Theorem 3.2. The Leversha Point is the Image of the Center of the Tangential
Circle under the Homothety with Center at the Circumcenter and Ratio 2:3.

Theorem 3.3. The Leversha Point is the Point Dividing Internally the Directed
Segment from the Circumcenter to the Circumcenter of the Tangential Triangle in
the Ratio of 2:1.

Theorem 3.4. The Laversha Point lies on the Image of the Brocard Circle under
the Homothety with Center the Center of the Tangential Circle and Ratio 1:3.

Theorem 3.5. The Laversha Point lies on the Image of the Lester Circle under
the Homothety with Center the Center of the Tangential Circle and Ratio 1:3.
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Figure 3.

Figure 4.

Figure 3 illustrates Theorem 3.4. In figure 3, T is the center of Tangential circle, c1
is the Brocard circle, M is the center of the Brocard circle, O is the circumcenter
of triangle ABC, c2 is the image of the Brocard circle under homothety with
center T and ratio 1:3, N is the center of circle c1, and L is the Leversha point.
Point L lies on circle c2.
Figure 4 illustrates Theorem 3.5. In figure 4, T is the center of Tangential circle,
c1 is the Lester circle, M is the center of the Lester circle, O is the circumcenter
of triangle ABC, c2 is the image of the Lester circle under homothety with center
T and ratio 1:3, N is the center of circle c1, and L is the Leversha point. Point L
lies on circle c2.
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We recommend the reader to generalize theorems 3.4 and 3.5 to the case where
the circumcenter O lies on an arbitrary circle.
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